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ABSTRACT

Transmission techniques for the wireless multi-antenna broad-
cast channel often require that the receivers feed back their
channel state information (CSI) to the transmitter. In this pa-
per, we propose a limited feedback method to approximate
zero-forcing beamforming. Each user feeds back quantized
information about channel direction and a deterministic lower
bound on its signal-to-interference-plus-noise ratio (SINR),
which require no more than an integer and a real number.
With this information, the Base Station performs user schedul-
ing, beamforming and rate adaptation. In this method, the in-
formation from both receiver and transmitter sides are taken
into account to arrive at a tight lower bound on the supported
rate of each user. Since a lower bound on the SINR is fed
back, the proposed method avoids outage. We discuss the
feedback load of the method, and show numerical results of
the relationship between sum-rate and feedback load, SNR
and number of users, as well as a comparison with similar
methods.

1. INTRODUCTION

Extensive research has been performed on point-to-point wire-
less multi-antenna channels towards efficiently exploiting the
spatial dimension. It has been shown [1] that adding antennas
to transmitter and receiver can greatly enhance performance
through techniques that exploit the degrees of freedom, in the
form of spatial diversity, multiplexing, or a combination of
those.

The multi-user approach to wireless multi-antenna chan-
nels allows for significant performance gains, based on dif-
ferences between the channels of the users, which can be ex-
ploited by scheduling and precoding techniques. In this pa-
per we focus on multi-antenna broadcast channels, which can
model a cell with one base station and many users in a cellular
network.
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The nonlinear technique called Dirty-Paper Coding (DPC)
[2], based on interference cancellation at the transmitter, was
shown to achieve the borders of the capacity region. DPC has
a high computational complexity, and linear processing tech-
niques at the transmitter, along with adequate user schedul-
ing, are a suitable alternative. They present lower complexity
than DPC, and deal differently with interference. One such
technique, zero-forcing beamforming (ZFBF), multiplies the
transmitted signals by weight vectors orthogonal to the chan-
nels of the other users, thus canceling interference.

A key characteristic of the multi-antenna broadcast chan-
nel is the need for channel state information at the transmitter
(CSIT). However, only in systems using time-division duplex
(TDD) the Base Station (BS) can estimate the downlink chan-
nels. In most practical systems, the BS must rely on chan-
nel state information (CSI) fed back by the users through a
limited-rate feedback channel.

There have been several different approaches to the lim-
ited feedback problem for the multi-antenna broadcast chan-
nel recently. In [3] and [4], random beamforming is proposed,
along with signal-to-interference-plus noise ratio (SINR) feed-
back from the users. In [5], the authors use transmit correla-
tion, when angle spread is small enough, to add information
and reduce feedback load and scheduling complexity. In [6],
an approximation to ZFBF is proposed: the users feed back
an estimate of their SINRs, as well as the quantized direction
of their channels.

In this paper, the Deterministic SINR Lower Bound Feed-
back (DLBF) is proposed, its performance is analyzed and
compared to methods previously proposed. Our scheme, de-
veloped independently from [6], is also based on ZFBF. How-
ever, there are significant differences between our scheme and
the one proposed in [6], which will be highlighted along this
paper. The most important is the fact that in DLBF the users
feed back a lower bound on the SINR, and thus our method
avoids outage. In [6], on the other hand, the estimate of the
SINR depends on the expected value of the interference, be-
ing consequently subject to outage.

This paper is organized as follows. In Section 2, the sys-



tem model is detailed. In Section 3 we discuss the problem
of quantizing the channel vector. Section 4 is devoted to the
development and analysis of the DLBF. Section 5 shows the
results obtained with DLBF and compares it with the tech-
nique in [6]. Section 6 contains our concluding remarks.

2. SYSTEM MODEL

A multi-user downlink channel is considered in this work,
where the BS has Nt antennas and each of the K users has
one antenna. We consider that, the BS transmits to at most Nt

different users at each block. Transmit beamforming is used
to direct the signal power to each served user as well as to
avoid interference. The received signal of the k-th user is

yk = wH
k hk xk +

Nt∑

j=1,j 6=k

wH
j hk xj + nk, (1)

where hk is the flat-fading Rayleigh channel of the k-th user,
with each of its components being the gain between a trans-
mit antenna and the receiver, nk is the white Gaussian noise
component at the k-th receive antenna with a variance of σ2,
wk is the beamforming weight vector and xk is the symbol
transmitted to the k-th user. It is assumed here that at each
block the scheduled users are assigned the same power. We
assume block fading, in which the channel is constant for a
block, and varies independently from one block to another.

The transmitter has access only to the partial CSI fed back
by the users, and must use only this information to perform
transmit beamforming, user scheduling (choosing Nt users
out of the total K to transmit to at each block) and rate adap-
tation (choosing at what rate to transmit to each user at each
block). In this paper we focus on the limited feedback by
the users. As in [6], this feedback is divided into channel
direction information (CDI) and channel quality information
(CQI). Neither channel estimation errors nor errors due to
feedback transmission are treated in this paper. Thus, each
receiver is assumed to have full knowledge of its own CSI
and the feedback channel is assumed to be error-free.

3. CHANNEL DIRECTION QUANTIZATION

In order to efficiently choose the beamforming vectors, the
BS must know the direction of the channel vector of each of
the scheduled users. In practice, this information needs to
be quantized. In this section, we review the design of a unit-
norm-vector codebook to quantize the direction of the channel
vectors.

The quantizer used in this paper is inspired by the Grass-
mann manifold, and was proposed in [7]. In Grassman-
nian beamforming, the codebook vectors {c1, c2, c3, . . . cN},
where ‖ci‖ = 1, for i = 1 . . . N , are chosen as the solution to
the minimization of the maximum inner product between any
two of its vectors

min
{c1,c2,...,cN}

max
i 6=j

|cH
i cj |. (2)

Solving (2) is equivalent to picking a set of vectors by maxi-
mizing the smallest distance between them. That is, the code-
book vectors are as spread as possible, thus providing good
covering of the space containing the channel vector. For a
given channel vector hk ∼ CN(0, INt), the vector that best
approximates its direction in the codebook is chosen as

max
j
|hH

k cj |. (3)

The Grassmanian codebook is shown [7] to maximize (3).
In [7], it is proposed that the chosen vector (the solution

to (3)) be the beamforming vector for the k-th user. This can
be regarded as an approximation of matched-filtering. Nev-
ertheless, it will be shown in Section 4 that such codebook
is appropriate to be used as the approximation of the channel
direction. The cardinality N of the codebook is determined
by the number of bits Bd dedicated to quantize the direction:
N = 2Bd .

There is no closed solution to find a Grassmanian code-
book, and the optimization problem in (2) is not convex. There-
fore, on all the results in Section 5 the simulations were per-
formed using codebooks obtained by solving (2) with MAT-
LAB’s genetic algorithm.

4. DETERMINISTIC LOWER BOUND FEEDBACK

In ZFBF with full CSIT, up to Nt users are scheduled at each
block, and the beamforming vectors are chosen so that

|wH
i hk| = 0 ∀ i 6= k. (4)

In a system with limited feedback, the BS does not know hk,
but only its quantized direction ck, computed in (3). In this
case, the beamforming vector is calculated so that

|wH
i ck| = 0 ∀ i 6= k. (5)

Assuming that all users are assigned the same power, we
can write the supported rate for the k-th user as

Rk = log2

(
1 +

P
Nt
|wH

k hk|2
σ2 + P

Nt

∑Nt

j=1,j 6=k |wH
j hk|2

)
. (6)

However, the users cannot compute the rate as in (6), since
the beamforming vectors are not available to them. Thus, we
manipulate the expression to find a computable value for the
user. To this end, we rewrite the channel vector hk as

hk = ||hk|| h̃k = ||hk|| (ak ck + ākc̄k), (7)

where h̃k is the normalized channel vector, ak is the compo-
nent of h̃k in the direction of ck, c̄k is the unit vector orthog-
onal to ck in the plane formed by ck and h̃k, and āk is the



component of h̃k in the direction of c̄k. Applying (7) to (6)
and using (5), we can write Rk as

log2

(
1 +

P
Nt
‖hk‖2 |ak wH

k ck + āk wH
k c̄k|2

σ2 + P
Nt
‖hk‖2

∑Nt

j=1,j 6=k |āk wH
j c̄k|2

)
(8)

The BS uses the supported rate of each user to sched-
ule the best set of users at a given block and to adapt their
transmission rates. However, (8) cannot be calculated ex-
actly either by the BS, since hk is unknown, or by the users,
since they do not know the beamforming vectors. Thus, the
BS must rely on some estimate, based on the information re-
ceived by the users’ feedback. In this paper, we propose that
the users feed back a lower bound on the SINR.

To calculate a lower bound at each receiver we impose the
restriction that |wH

k ck| ≥ B, where B is a pre-defined thresh-
old value, known to the BS and to all users. This is assumed to
be true by all users, who take this into consideration to com-
pute the lower bound. Note that the actual value of |wH

k ck|
depends on the set of scheduled users, since each beamform-
ing vector depends only on the quantized channels of the other
scheduled users. Therefore, the BS should only consider the
sets of users that meet this requirement. Note also that no out-
age can be caused by this requirement. If no set of Nt users
meets this condition, the base station may search for a subset
of Nt−1 users, and so on. In the worst case, any subset of one
user can be used, since in this case, the beamforming vector
can be chosen to have |wH

k ck| = 1.
In fact, as shown in [6], this restriction is equivalent to

requiring that the chosen codebook vectors of the scheduled
users be ε-orthogonal, that is:

|cH
k cj | ≤ ε, (9)

where ε and the threshold B have the following relation:

B =
(1 + ε) (1− (Nt − 1) ε)

1− (Nt − 2) ε
(10)

Hence, it is possible to implement DLBF using the semi-
orthogonal user selection algorithm (SUS) [8].

In the following theorem, we propose a deterministic lower
bound on the SINR, which can be calculated by using local
information on both receiver and transmitter sides.

Theorem 1. Let αk = |ak| = |h̃H
k ck|, βk = |wH

k ck| and
ᾱk = |āk| = |h̃H

k c̄k| . Let B̄ =
√

1−B2. Then, if βk ≥ B
for all of the Nt scheduled users,

R̂k = log2

(
1 +

β2
k

B2

P
Nt
‖hk‖2 (α2

k B2 − 2 αk ᾱk B B̄)

σ2 + P
Nt
‖hk‖2 γ ᾱ2

k

)

≤ Rk. (11)

The constant γ measures the residual interference caused
by the quantization of the CDI, and should be computable by
the users. It replaces the value

∑Nt

j=1,j 6=k |wH
j c̄k|2 and is

defined differently depending on the limited feedback tech-
nique. In our lower bound, we consider the worst-case esti-
mate of the interference, yielding γ = 1 for Nt = 2 and
γ = 1− B̄ for Nt = 3.

Proof. See Appendix A.

Here we highlight a significant difference between DLBF
and the method proposed in [6]. In [6], the users feed back
an estimate of the SINR. This estimate is similar in form to
(11), and in the denominator the users compute the expected
value of the interference. In this case, the constant γ is given
by γ = E

{ ∑Nt

j=1,j 6=k |wH
j c̄k|2

}
= 1 for any Nt. With this,

the actual interference may be greater than the estimated and
thus the supported rate lower than the estimated. If the BS
schedules an user to receive at a rate greater than its supported
rate, an outage occurs. Thus, the estimate proposed in [6]
is not a lower bound, and there is a non-null probability of
outage.

From (11), we see that the supported rates grow as αk → 1,
not only because the power of the desired signal increases, but
also because the interference decreases (since ᾱk → 0). This
is intuitive, since αk measures how well the CDI is aligned
with the actual channel. Further, we see that Grassmanian
codebooks are optimal in the sense that they maximize (3)
and hence maximize αk.

It should be noted that in the best possible case, where
there is no vector quantization error ( αk = 1 ) and the beam-
forming vector is aligned to the channel vector ( βk = 1 ),
this lower bound tends to the actual power of the desired sig-
nal. Thus, it is tighter for the users that are more likely to be
scheduled.

Note that the lower bound in (11) cannot be calculated by
the users, since the values of βk are not known to them. Thus,
they feed back the following SINR lower bound to the BS:

P
Nt
‖hk‖2 (α2

k B2 − 2 αk ᾱk B B̄)

σ2 + P
Nt
‖hk‖2 γ ᾱ2

k

. (12)

The BS, on the other hand, has access to the actual values
of βk, and can easily calculate (11) by multiplying (12) by β2

k

B2

to obtain

R̂k = log2(1 +
P
Nt
||hk||2 (α2

k β2
k − 2 αk ᾱk

β2
k

B2 B̄)

σ2 + P
Nt
||hk||2 γ ᾱ2

k

) ≤ Rk.

(13)
Thus, the BS introduces additional information into the

lower bound by taking into account the alignment of the chan-
nel and the beamforming vectors. This tightens the lower
bounds and makes them less dependent on the choice of the



value of the threshold B. Since the optimal value of B de-
pends on the number of users, the SNR and the fading of each
user, the above characteristic is very desirable in practice.

We summarize DLBF in Table 1, in a step-by-step de-
scription of the technique.

Table 1. Description of the DLBF
1. Each user (perfectly) estimates his channel
2. The codebook vector ck is chosen as in eq. (3)
3. The SINR lower bound is calculated as in eq. (12)
4. The index of the chosen codebook vector (an integer)

and the SINR lower bound (a real number) are sent to
the BS through an error-free channel

5. The BS tightens the lower bounds using the information
regarding the alignment of the channel and the
beamforming vectors

6. The BS schedules a subset of up to Nt users
to transmit to during this block according to the
sum-rate maximization criterion

7. The BS calculates the beamforming vectors and the
rates allocated to each scheduled user

8. The BS sends the signals to the users

5. RESULTS

We have simulated a multi-antenna broadcast channel in two
different scenarios: two and three transmit antennas. In all
simulations, we take into account the information fed back by
the users not only for the purposes of beamforming and user
scheduling, but also for rate adaptation. This means that the
actual rate transmitted by the BS to the k-th user is R̂k as in
(11), whereas Rk in (6) is the supported rate of the channel
for a given set of scheduled users and beamforming vectors.
The latter, nonetheless, is unknown to the BS in practice, thus
we assume R̂k to be the actual rate.

In the first scenario, we use a transmitter with two anten-
nas and schedule up to two users per block by maximizing the
sum-rate through exhaustive search among the possible sets
of semi-orthogonal users. The total SNR is 10dB. We con-
sider the quantization of both CDI and CQI and obtain results
regarding the feedback load. In Figure 1, we plot the actual
sum rate for several different feedback loads. Each curve cor-
responds to the best distribution of the feedback bits between
CDI and CQI, considering a given allowance of feedback bits.
The feedback of the CQI, in the form of the SINR lower
bound as in (12), was quantized by maximizing the expected
value of the rate through MATLAB’s genetic algorithm, since
the cost function of the maximization is not concave. Note
from Figure 1 that it is usually better to increase the number
of CDI bits than that of the CQI. In fact, when the total feed-

back load is up to 7 bits per user, the best strategy is to assign
at most 2 bits for CQI feedback. This follows from the fact
that quantizing a vector requires more levels than quantizing
a scalar.
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In the second scenario, we assume the CQI feedback to be
unquantized, and take into consideration the variations of the
sum rate with the SNR, number of users, number of CDI feed-
back bits and the threshold B, with three antennas in the BS.
The user scheduling algorithm used is the semi-orthogonal
user scheduling (SUS) proposed in [6], due to its lower com-
putational complexity.

In this scenario we plot curves for both the supported sum-
rate Rk in (6) and the actual sum-rate R̂k in (11), in order to
show the distance between the SINR estimates and their real
values. Unless otherwise specified, the total SNR is fixed at
10dB, the threshold B is fixed at 0.824, 9 bits are used to
quantize CDI and the number of users is 100.

The sensitivity to the threshold B is shown in Figure 2.
Due to the addition of information to the SINR lower bound
at the BS, DLBF is less sensitive to changes in the threshold.
The horizontal line in the figure marks the maximum sum rate
achieved by the method in [6]. Clearly, DLBF achieves larger
values than [6] for any threshold B between 0.73 and 0.91.
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We also see that the difference between the maximum rate
achieved by DLBF and the maximum achieved by [6] is 0.285
bits/s/Hz.

In Figure 3, we show the sum-rate as a function of the
number of users in the system. In this figure, we choose the
threshold values that achieve the best rates for each number
of users. Here we again compare the performance between
DLBF and the method proposed in [6]. We see that DLBF
outperforms [6] by around 3%. We can also observe that
the rate curve for DLBF is approximately parallel to the one
for Perfect CSIT, which indicates that DLBF successfully ex-
ploits multi-user diversity.

Figure 4 shows the sum rate as a function of the SNR.
Both DLBF and the method in [6] start to saturate at high
SNR, since residual interference plays an important role in
limiting the sum rate growth. Nevertheless, DLBF starts to
saturate at a lower SNR than the method in [6], since the in-
terference estimate to compute the rate is larger in the former.

In Figure 5, the sum rate is plotted as a function of the
number of CDI bits. We note that the curve for DLBF grows
faster than the one for [6]. We also observe that DLBF achieves
a sum rate of 8.6 bits/s/Hz with 8 CDI bits, whereas 9 bits are
needed for the method in [6] to achieve the same rate.
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6. CONCLUSION

In this paper we proposed a method of limited CSI feedback
for the broadcast channel, the DLBF, based on a determinis-
tic lower bound of the instantaneous SINR of each user. We
derived the lower bound and showed that it can be computed
in practice by using information from both user and BS sides.

Since we use the SINR lower bound to calculate the rates
to be transmitted at each block, it is guaranteed that these rates
are always below the supported rates, and thus we completely
avoid outage. Nonetheless, the results of our numerical sim-
ulations show that DLBF achieves fairly good performance,
outperforming the method proposed in [6] for SNR less than
20 dB in the simulated scenarios.
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A. PROOF OF THEOREM 1

The SINR lower bound obtained in (11) can be divided into a
lower bound on the power of the desired signal and an upper
bound on interference. We will start with the former. We can
rewrite the power of the desired signal in (8) as

P

Nt
|wH

k hk|2 =
P

Nt
‖hk‖2 |wH

k h̃k|2 = (14)

=
P

Nt
‖hk‖2 |ak wH

k ck + āk wH
k c̄k|2

Using the inequality |x + y| ≥ ∣∣|x| − |y|∣∣, and the definitions
αk = |ak|, ᾱk = |āk|, βk = |wH

k ck|, and β̄k = |wH
k c̄k|, we

state that

P

Nt
‖hk‖2 |ak wH

k ck + āk wH
k c̄k|2 ≥ (15a)

P

Nt
‖hk‖2 |αk βk − ᾱk β̄k|2 = (15b)

P

Nt
‖hk‖2

(
α2

k β2
k − 2 αk ᾱk βk β̄k + ᾱ2

k β̄2
k

) ≥ (15c)

P

Nt
‖hk‖2

(
α2

k β2
k − 2 αk ᾱk βk β̄k

) ≥ (15d)

P

Nt
‖hk‖2

(
α2

k B2
k − 2 αk ᾱk B B̄

)
(15e)

In the second inequality, we removed the last term, ᾱ2
k β̄2

k ,
which is strictly nonnegative. Although this removal causes
the lower bound to loosen, it permits that a tightening be per-
formed at the BS, as will be shown next. This procedure is
worthy when the quantization error ᾱ is much smaller than α,
which usually happens. The last inequality comes from the re-
quirement that βk ≥ B which in turn implies that β̄k ≤ B̄.
It is necessary to use this inequality because the users have no
access to the actual value of βk.

This lower bound can be tightened, however, by multiply-
ing (15e) by (βk

B )2 at the BS:
(

βk

B

)2
P

Nt
‖hk‖2

(
α2

k B2
k − 2 α ᾱ B B̄

)
= (16a)

P

Nt
‖hk‖2

(
α2

k β2
k − 2 αk ᾱk

(
β2

k

B

)
B̄

)
= (16b)

P

Nt
‖hk‖2

(
α2

k β2
k − 2 αk ᾱk βk B̄

(
βk

B

)) ≤ (16c)

P

Nt
‖hk‖2

(
α2

k β2
k − 2 αk ᾱk βk β̄

)
(16d)

Note that (16a) is a tighter lower bound than (15e), since
it is multiplied by a value greater than 1. In the last inequality,
nonetheless, it is shown that (16a) is still a lower bound, since
(15d) and (16d) are the same expression.

Now we focus on the upper bound of the interference. We
define the constant γ =

∑Nt

j=1,j 6=k |wH
j c̄k|2, which cannot

be calculated by the users since the beamforming vectors are
unknown to them. Therefore, we use the worst-case estimate
in our SINR lower bound:

max
{w1,...,wk−1,wk+1,...,wNt}

Nt∑

j=1,j 6=k

|wH
j c̄k|2 (17)

subject to βi ≥ B ∀ i = 1 . . . Nt.

Let W = [w1, w2, . . . ,wk−1, wk−1, . . . ,wNt ]. Then,
the maximization problem in (17) can be written as

max
W

c̄H
k (WWH) c̄k (18)

subject to βi ≥ B ∀ i = 1 . . . Nt.

We suppose, without loss of generality, that k = 1. For
the case where Nt = 2, W = w2, and w2 = ej θc̄1 maxi-
mizes (18), for any θ. Therefore the upper bound is γ = 1.
Note that for Nt = 2, γ = 1 is the actual value of γ for any
realization. Since c1 and c̄1 are an orthonormal base of C2,
|wH

2 c1| = 0, and ‖w2‖ = 1, then |wH
2 c̄1| = 1.

For the general case, (18) is equivalent to finding the largest
eigenvalue of the matrix WWH. It is equivalent, in turn, to
work with the matrix WH W, since the non-zero eigenvalues
of both matrices are equal. Therefore, we can find an upper
bound on this value by solving the characteristic polynomial
equation of this matrix, which is composed of terms in the
form wH

i wj , where

|wH
i wj | = 1 for i = j (19a)

|wH
i wj | = |bij | ≤ B̄ for i 6= j. (19b)

The inequality in (19b) is proved through the decomposi-
tion of wi in the orthogonal basis {ci, wj , w̌i}:



wi = βi ci + bij wj + w̌i (20)

where j 6= i and w̌i is a vector orthogonal to ci and wj in the
direction of wi. Since ‖wi‖ = 1 and |βi| ≥ B, we have

‖wi‖2 = β2
i + |bij |2 + ‖w̌i‖2 = 1 (21)

|bij |2 = 1− β2 − |w̌i‖2 ≤ 1−B2 = B̄2 (22)

Thus, we can solve the characteristic equation of WH W
to find the largest possible eigenvalue. For Nt = 3, we have

det (WH W − λ I) = 0 (23a)
(1− λ)2 − (wH

2 w3) (wH
3 w2) = 0 (23b)
1− λ = ±|wH

2 w3| (23c)
λmax = 1 + |wH

2 w3|(23d)

Thus, for Nt = 3, λmax ≤ 1 + B̄.


