Processamento Digital de Sinais

Renato da Rocha Lopes e Amauri Lopes

rlopes@decom.fee.unicamp.br

DECOM - Departamento de Comunicações - DECOM Faculdade de Engenharia Elétrica e de Computação - FEEC Universidade Estadual de Campinas - UNICAMP

Conteúdo da Aula

Introdução

Filtros FIR

- Introdução
- Truncamento
- Janelamento
- Kaiser
- Finalizando
- 3
 - Filtros IIR
 - Introdução
 - Filtros Analógicos
 - Transformação Bilinear
 - Butterworth
 - Chebyshev
 - Finalizando

Conteúdo da Aula

Introdução

- Introdução
- Truncamento
- Janelamento
- Kaiser
- Finalizando
- - Introdução
 - Filtros Analógicos
 - Transformação Bilinear

 - Chebyshev
 - Finalizando

Introdução

- Especificação da resposta em freqüência desejada
- Especificação da estrutura:
 - ► FIR ou IIR
 - Número de coeficientes
- Determinação dos coeficientes
- Representação com precisão finita
- Mudar Estrutura se necessário

Especificação

Máscara da Resposta em Amplitude

Conteúdo da Aula

Introdução

2 Filtros FIR

- Introdução
- Truncamento
- Janelamento
- Kaiser
- Finalizando
- 3 Filtros II
 - Introdução
 - Filtros Analógicos
 - Transformação Bilinear
 - Butterworth
 - Chebyshev
 - Finalizando

Conteúdo da seção

Introdução

Filtros FIR

Introdução

- Truncamento
- Janelamento
- Kaiser
- Finalizando
- 3 Filtros IIF
 - Introdução
 - Filtros Analógicos
 - Transformação Bilinear
 - Butterworth
 - Chebyshev
 - Finalizando

Filtros FIR

- Fase Linear
- Estáveis
- Baixa sensibilidade a erros de arredondamento.
- Resposta ao impulso h[n] diretamente ligada a coeficientes.

Desafio:

- Resposta desejada $H_d(\omega)$ leva a resposta temporal $h_d[n]$ de duração infinita.
- Que *h*[*n*] **finito** melhor aproxima *h*_d[*n*]?

Fase Linear

Fonte:

www.dspguide.com/ch19/4.htm

- Não causa distorção de fase, só atraso
- Simetria na resposta.
 - Exigido por comunicações e processamento de imagem
- Implementado com metade das multiplicações

Introdução

Exemplo: filtro passa-baixas ideal

Conteúdo da seção

Introdução

Filtros FIR

Introdução

• Truncamento

- Janelamento
- Kaiser
- Finalizando
- 3 Filtros IIF
 - Introdução
 - Filtros Analógicos
 - Transformação Bilinear
 - Butterworth
 - Chebyshev
 - Finalizando

Truncando a Resposta

Idéia para resposta ao impulso finita:

$$h[n] = \left\{ egin{array}{cc} h_d[n], & |n| < N \ 0, & {
m caso \ contrário} \end{array}
ight.$$

Causalidade

Truncamento ainda não é causal:

$$y[n] = \sum_{k=-10}^{10} x[n-k]h[k]$$

= $x[n+10]k[-10] + x[n+9]h[-9] + \cdots + x[n-10]h[10]$

 $\Rightarrow y[n]$ depende de valores futuros de x[n]

 \Rightarrow não pode ser implementado em tempo real

Atraso e causalidade

• Solução causal:

▶ Desloca *h*[*n*] de 10 amostras para a direita:

$$h[n] = \left\{ egin{array}{cc} h_d[n-10], & 0 \leq n \leq 20 \ 0, & ext{caso contrário} \end{array}
ight.$$

$$H(\omega) = e^{-j\omega 10} H_{\text{truncado}}(\omega)$$

- \Rightarrow mesma magnitude
- \Rightarrow fase linear: -10ω

Explicando Transição e Oscilações

$$\begin{split} h[n] &= h_d[n] w[n] \\ H(\mathrm{e}^{j\omega}) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(\mathrm{e}^{j\theta}) W(\mathrm{e}^{j(\omega-\theta)}) \,\mathrm{d}\theta \end{split}$$

Explicando Transição

- Ponto A: área começa a diminuir
 - Começo da transição
- Ponto B: área termina da diminuir
 - Fim da transição
- ullet Largura da faixa de transição depende da do lóbulo central $pprox 2\pi/N$
- $H(\omega_c) \approx 1/2$

• Usa
$$\omega_c = (\omega_p + \omega_r)/2$$

Melhorando Transição

Aumenta tamanho da janela, diminui transição

Renato R. Lopes e Amauri Lopes (DECOM)

Explicando Oscilações

- Oscilação depende da área dos lóbulos laterais
 - ► Igual nas faixas de passagem e rejeição.
- Para janela retangular, não depende de N
- Solução: Outras janelas

Conteúdo da seção

Introdução

Filtros FIR

- Introdução
- Truncamento

Janelamento

- Kaiser
- Finalizando
- 3 Filtros II
 - Introdução
 - Filtros Analógicos
 - Transformação Bilinear
 - Butterworth
 - Chebyshev
 - Finalizando

Outras Janelas: Definição

Bartlett (triangular)
$$w[n] = \begin{cases} 2n/M; & 0 \le n \le M/2\\ 2-2n/M; & M/2 \le n \le M\\ 0; & c.c. \end{cases}$$

Hanning
$$w[n] = \begin{cases} 0, 5-0, 5\cos(2\pi n/M); & 0 \le n \le M \\ 0; & c.c. \end{cases}$$

Hamming
$$w[n] = \begin{cases} 0,54-0,46\cos(2\pi n/M); & 0 \le n \le M \\ 0; & c.c. \end{cases}$$

$$w[n] = \begin{cases} \text{Blackman} \\ 0,42-0,5\cos\left(\frac{2\pi n}{M}\right) + 0,08\cos\left(\frac{4\pi n}{M}\right); & 0 \le n \le M \\ 0; & c.c. \end{cases}$$

Outras Janelas: Tempo

Outras Janelas: Freqüência

Outras Janelas: Características

Tipo	Amplitude	Largura	Oscilação
de	do lóbulo	aproximada	máxima
janela	lateral	do lóbulo	aprox.
	(dB)	central	(dB)
Retangular	-13	$4\pi/(M+1)$	-21
Bartlett	-25	$8\pi/M$	-25
Hanning	-31	$8\pi/M$	-44
Hamming	-41	$8\pi/M$	-53
Blackman	-57	$12\pi/M$	-74

Exemplo

Projetar um filtro passa-baixas com:

- Freqüência de corte $\omega_c = \pi/2$,
- largura da região de transição $riangle \omega \leq 0, 2\pi$,
- erro máximo na faixa de passagem de 0,02,
- erro máximo na faixa de rejeição de 0,01.

Faixa de passagem \Rightarrow oscilação $< 20 * \log_{10}(0,02) = -34 \text{ dB}$

Faixa de rejeição \Rightarrow oscilação $< 20 * \log_{10}(0,01) = -40 \text{ dB}$

Janela com menor transição que satisfaz oscilação: Hamming

Exemplo

Conteúdo da seção

Introdução

Filtros FIR

- Introdução
- Truncamento
- Janelamento
- Kaiser
- Finalizando
- 3 Filtros III
 - Introdução
 - Filtros Analógicos
 - Transformação Bilinear
 - Butterworth
 - Chebyshev
 - Finalizando

Kaiser

Janela de Kaiser

Projeto com janelas tradicionais envolve tentativa e erro. Alternativa: Janela de Kaiser:

$$w[n] = \begin{cases} \frac{I_0 \left\{ \beta \left[1 - \left(\frac{n-\alpha}{\alpha}\right)^2 \right]^{1/2} \right\}}{I_0(\beta)}, & 0 \le n \le M \\ 0, & c.c. \end{cases}$$

Parâmetros:

- *α* = *M*/2
- $I_0(x)$: função de Bessel Modificada de 1^a espécie e ordem zero
- M: largura da janela
- β : altera a forma da janela, podendo até aproximar outras janelas

Janela de Kaiser: Características

 β escolhido para a mesma oscilação

Tipo	Amplitude	Largura	Osc.	Janela	Transição
de	do lóbulo	aprox.	máxima	de Kaiser	janela
janela	lateral	do lóbulo	aprox.	equiv.	Kaiser
	(dB)	central	(dB)	β	equiv.
Retangular	-13	$\frac{4\pi}{M+1}$	-21	0	$1,81\pi/M$
Bartlett	-25	$8\pi/M$	-25	1,33	$2,37\pi/M$
Hanning	-31	$8\pi/M$	-44	3,86	5,01 π/M
Hamming	-41	$8\pi/M$	-53	4,86	$6,27\pi/M$
Blackman	-57	$12\pi/M$	-74	7,04	$9,19\pi/M$

Kaiser tem transição menor

Kaiser

Projeto com Janela de Kaiser

Sejam $A = -20 \log \delta$ e $\bigtriangleup \omega = \omega_r - \omega_p$

$$\beta = \begin{cases} 0,1102(A-8,7), & A > 50 \\ 0,5842(A-21)^{0,4} + 0,07886(A-21), & 21 \le A \le 50 \\ 0, & A < 21 \end{cases}$$
$$M = \frac{A-8}{2,285 \triangle \omega}$$

Kaiser

Exemplo

Projetar um filtro passa-baixas com:

- Faixa de passagem até $\omega_c = 0.4\pi$,
- Freqüência de rejeição $\omega_r = 0.6\pi$,
 - largura da região de transição $riangle \omega \leq 0, 2\pi$
- erro máximo na faixa de passagem de 0,01,
- erro máximo na faixa de rejeição de 0,001.

Menor oscilação: $20 * \log_{10}(0,001) = -60 \, dB$

 $\triangle \omega = \omega_r - \omega_p = 0.2\pi$

$$\Rightarrow \beta = 5,653, \quad M = 37.$$

Filtros FIR

Kaiser

Resultado

Conteúdo da seção

Introdução

Filtros FIR

- Introdução
- Truncamento
- Janelamento
- Kaiser
- Finalizando
- 3 Filtros III
 - Introdução
 - Filtros Analógicos
 - Transformação Bilinear
 - Butterworth
 - Chebyshev
 - Finalizando

Finalizando

Comparação

Renato R. Lopes e Amauri Lopes (DECOM)

Processamento Digital de Sinais

Outros filtros

Deslocamento em freqüência: $h[n]e^{j\omega_0n} = H(\omega - \omega_0)$

$$\Rightarrow 2h[n]\cos(\omega_0 n) = H(\omega - \omega_0) + H(\omega + \omega_0)$$

Para passa-faixas ou passa-altas, usa w_0 adequado

Filtros IIR

Conteúdo da Aula

Introdução

2 Filtros FIR

- Introdução
- Truncamento
- Janelamento
- Kaiser
- Finalizando

Filtros IIR

- Introdução
- Filtros Analógicos
- Transformação Bilinear
- Butterworth
- Chebyshev
- Finalizando

Conteúdo da seção

Introdução

2 Filtros FIR

- Introdução
- Truncamento
- Janelamento
- Kaiser
- Finalizando

Filtros IIR

Introdução

- Filtros Analógicos
- Transformação Bilinear
- Butterworth
- Chebyshev
- Finalizando

Introdução

Método Geral

- Poderíamos calcular a Transformada de Fourier inversa da resposta desejada.
 - ▶ Resposta resultante tem duração infinita ⇒ IIR
 - Desvantagem da idéia: ausência de método para mapear h[n] em polos e zeros.
- Três métodos:
 - Filtros Analógicos + Transformação Bilinear ►
 - Filtros Analógicos + Invariância ao Impulso
 - Otimização direta dos coeficientes.

Conteúdo da seção

Introdução

2 Filtros FIR

- Introdução
- Truncamento
- Janelamento
- Kaiser
- Finalizando

Filtros IIR

Introdução

• Filtros Analógicos

- Transformação Bilinear
- Butterworth
- Chebyshev
- Finalizando

Transformada de Laplace

- Como tranformada Z, mas para sistemas analógicos
- Entrada do sistema: $x(t) = e^{st}$
 - Saída do sistema: $y(t) = H(s)e^{st}$.

Definição

$$\mathcal{L}\{x(t)\} = X(s) = \int x(t) \mathrm{e}^{-st} \,\mathrm{d}t$$

Propriedades

Linearidade:
$$\mathcal{L} \{ax(t) + by(t)\} \longleftrightarrow aX(s) + bY(s)$$

Diferenciação: $\mathcal{L} \{\frac{d}{dt}x(t)\} \longleftrightarrow sX(s)$

Laplace e Sistemas

Sistemas analógicos são descritos por equações diferenciais.

• Exemplo:
$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + y(t) = \frac{\mathrm{d}}{\mathrm{d}t}x(t) + 2x(t)$$

• Laplace:
$$sY(s) + Y(s) = sX(s) + 2X(s)$$

• Função de Transferência:
$$H(s) = \frac{Y(s)}{X(s)} = \frac{s+2}{s+1}$$

Polos e Zeros

- Determinam comportamento do sistema
- Permitem cálculo da resposta em freqüência: $H(j\omega)$
- Estabilidade:
 - ⇔ Polos estão no semi-plano esquerdo
 - \Leftrightarrow Parte real dos polos < 0.

Conteúdo da seção

Introdução

2 Filtros FIR

- Introdução
- Truncamento
- Janelamento
- Kaiser
- Finalizando

Filtros IIR

- Introdução
- Filtros Analógicos
- Transformação Bilinear
- Butterworth
- Chebyshev
- Finalizando

Transformação bilinear: Introdução

Objetivo: mapear polos e zeros analógicos em polos e zeros digitais de forma que

- Polos estáveis, $\Re\{s\} < 0$, viram polos estáveis, |z| < 1.
- Freqüências analógicas, $s=j\Omega$, viram freqüências digitais, $z={
 m e}^{j\omega}$

Transformação bilinear: Definição e Propriedades

$$s = c \; rac{1-z^{-1}}{1+z^{-1}}; \quad z = rac{1+s/c}{1-s/c}$$

- $\Re\{s\} < 0 \leftrightarrow |z| < 1$
 - Polos estáveis levam em polos estáveis
- c: constante em geral 2.
- $s = j\Omega \leftrightarrow = e^{j\omega}$
 - $\omega = 2 \arctan(\Omega/c) \leftrightarrow \Omega = c \tan(\omega/2)$
 - Toda freqüência analógica é mapeada em uma freqüência digital.
 - ► Mapeamento é não linear ⇒ distorção na resposta em freqüência
- Para $|\Omega| \ll 1$ temos $|\omega| \simeq 2\Omega/c$

Transformação Bilinear em Freqüência

Resumo

Comece com uma máscara em freqüências discretas

2 Obtenha máscara analógica fazendo $\Omega = c \tan(\omega/2)$

- Para filtro passa-baixas, freqüências de passagem e corte:
- $\Omega_p = c \tan(\omega_p/2), \quad \Omega_r = c \tan(\omega_r/2)$
- Projete $H_c(s)$

• Faça
$$H(z) = H(s)|_{s=c\frac{1-z^{-1}}{1+z^{-1}}}$$

Conteúdo da seção

Introdução

2 Filtros FIR

- Introdução
- Truncamento
- Janelamento
- Kaiser
- Finalizando

Filtros IIR

- Introdução
- Filtros Analógicos
- Transformação Bilinear

Butterworth

- Chebyshev
- Finalizando

Filtro de Butterworth Analógico

- $H_c(s)$ é maximamente plano em s = 0
 - Muitas derivadas nulas na origem.
- $|H_C(j\Omega)|$ diminui quando Ω aumenta.
- N: número de polos.

$$|H_c(\Omega)|^2 = rac{1}{1+(\Omega/\Omega_c)^{2N}}$$
 $f(s) = rac{\Omega_c^N}{N-1}$,

Resultado: $H_c(s) = \frac{\Delta t_c}{\prod\limits_{k=0}^{N-1} (s-s_k)}$, com $s_k = \Omega_c \exp\left(j\frac{2k+1}{2N}\pi + j\frac{\pi}{2}\right)$

Butterworth

Resposta em Freqüência

I

Filtro de Butterworth Digital

$$H(z) = H_{c}(s) \left| s = c \frac{1 - z^{-1}}{1 + z^{-1}} \right|$$
$$= \frac{\Omega_{c}^{N}}{\prod_{k=0}^{N-1} \left(c \frac{1 - z^{-1}}{1 + z^{-1}} - s_{k} \right)}$$
$$= \frac{\Omega_{c}^{N} (1 + z^{-1})^{N}}{\prod_{k=0}^{N-1} \left[c - s_{k} - (c + s^{k})z^{-1} \right]}$$

Filtro de Butterworth Exemplo

Filtro de Butterworth Exemplo

$$\Omega_p = 2 \tan(0, 1\pi), \quad \Omega_r = 2 \tan(0, 15\pi)$$

 $|H_c(\Omega)|^2$ deve satisfazer

$$10\log|H_c(\Omega_{
ho})|^2\geq -1$$
 e $10\log|H_c(\Omega_r)|^2\leq -15,$

ou seja,

$$10 \log \frac{1}{1 + \left[\frac{2 \tan(0, 1\pi)}{\Omega_c}\right]^{2N}} \ge -1$$
(1)
$$10 \log \frac{1}{1 + \left[\frac{2 \tan(0, 15\pi)}{\Omega_c}\right]^{2N}} \le -15.$$
(2)

Filtro de Butterworth Exemplo

$$\Rightarrow N > 5,304 \Rightarrow N = 6 \Rightarrow \Omega_c = 0,76622$$

 $H_c(s) =$

 $\frac{0,20238}{(s^2+0,396s+0,5871)(s^2+1,083s+0,5871)(s^2+1,4802s+0,5871)}$ H(z) =

$$\frac{0,0007378(1+z^{-1})^{6}}{(1-1,2686z^{-1}+0,7051z^{-2})(1-1,0106z^{-1}+0,3583z^{-2})} \times \frac{1}{(1-0,9044z^{-1}+0,2155z^{-2})}$$

Resultado

Conteúdo da seção

Introdução

2 Filtros FIR

- Introdução
- Truncamento
- Janelamento
- Kaiser
- Finalizando

Filtros IIR

- Introdução
- Filtros Analógicos
- Transformação Bilinear
- Butterworth
- Chebyshev
- Finalizando

Introdução

- Butterworth decresce monotonicamente:
 - Máscara é satisfeita exatamente em ω_p e ω_r
 - Folga nas outras freqüências.
- Chebyshev distribui erros na faixa:
 - ► Tipo I: oscilações na faixa de passagem e monotônico na de rejeição
 - ► Tipo II: monotônico na faixa de passagem e oscilações na de rejeição.

Filtros IIR

Chebyshev

Introdução

Filtro de Chebyshev Analógico - Tipo I

$$|H_c(\Omega)|^2 = rac{1}{1 + \epsilon^2 V_N^2(\Omega/\Omega_c)}$$

Polinômio de Chebyshev

$$V_N(x) = \cos[N \arccos(x)]$$

$$V_{N+1}(x) = 2xV_N(x) - V_{N-1}(x)$$

$$V_0(x) = 1; V_1(x) = x$$

Parâmetros de Projeto

 ϵ : Controla oscilações na faixa de passagem: $-10 \log_{10} (1 + \epsilon^2)$ Ω_c : Igual à faixa de passagem, Ω_p

N: Determina a faixa de rejeição.

Chebyshev

Filtro de Chebyshev: Exemplo

Filtro de Chebyshev: Exemplo

$$\Omega_c=\Omega_{
m p}=2 an(0,1\pi)=0,6498$$

Determinando ϵ :

$$-10\log(1+\epsilon^2)=-1\Rightarrow\epsilon=0,50885$$

Determinando N:

$$-10\log\left[1+\epsilon^2 V_N^2(\Omega/\Omega_c)
ight]_{\Omega=\Omega_r}=-15$$

Como $\Omega_r = 2 \tan(0, 15\pi)$, N = 4. Para Butterworth, N = 6.

Resultado

$$H_c(s) = \frac{0,04381}{(s^2 + 0,1814s + 0,4166)(s^2 + 0,4378s + 0,1180)}.$$

$$H(z) = \frac{0,001836(1 + z^{-1})^4}{(1 - 1,4996z^{-1} + 0,8482z^{-2})(1 - 1,5548z^{-1} + 0,6493z^{-2})}$$

Renato R. Lopes e Amauri Lopes (DECOM)

Filtros IIR

Chebyshev

Resultado

Conteúdo da seção

Introdução

2 Filtros FIR

- Introdução
- Truncamento
- Janelamento
- Kaiser
- Finalizando

Filtros IIR

- Introdução
- Filtros Analógicos
- Transformação Bilinear
- Butterworth
- Chebyshev
- Finalizando

Filtros Elípticos

- Substitui V_N(x) por função racional.
- Introduz oscilações nas duas faixas
- Mais eficiente
 - N = 3 no exemplo anterior.
- Intuitivo
 - Espalha polos na faixa de passagem
 - Espalha zeros na faixa de rejeição

Projetando Outros Filtros

Para obter filtros passa-altas ou passa-faixas, é necessário fazer transformação.

- Sejam:
 - θ_p a freqüência de corte de um projeto,
 - ω_p a nova freqüência de corte desejada.
- Passa altas: $H_{new}(z) = H_{old}(Z)$, onde:

$$Z = \frac{1 - \alpha z^{-1}}{z^{-1} - \alpha}$$

$$A = \frac{\sin\left(\frac{\theta_p - \omega_p}{2}\right)}{\sin\left(\frac{\theta_p + \omega_p}{2}\right)}$$

• Outras transformações levam a outros tipos de filtro