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ABSTRACT

In this paper, we propose a semi-blind state-space based re-
ceiver that jointly performs channel estimation and data de-
tection in MIMO systems subject to fast frequency-selective
fading. To accomplish these two tasks, we first define state
equations representing the dynamics of channel and transmit-
ted signals. Then, we obtain the state vector by concate-
nating the transmitted signals and the channel coefficients.
This choice of state vector leads to a nonlinear observation
equation and hence to the use of the Extended Kalman Fil-
ter (EKF) to estimate the states variables. We then develop
the EKF and show that the proposed receiver is a generaliza-
tion of many similar receivers for SISO channels. We also
develop a reduced complexity version of the proposed algo-
rithm. Simulation results show the performance gains of the
proposed receiver when compared to other commonly used
receivers.

1. INTRODUCTION

Recently, multiple-input – multiple-output (MIMO) systems
have attracted significant attention as a means of achieving
high data rates in wireless communications. However, as data
rate increases, the wireless channel starts causing consider-
able distortion to the transmitted signals by introducing inter-
symbol interference (ISI). In addition, due to the relative mo-
tion between transmitter and receiver, the fading channel is
time-varying. The resulting time-varying frequency-selective
fading channel is usually unknown to the receiver. This makes
the detection of the transmitted symbols a difficult task. To
overcome this difficulty, conventional receivers employ a chan-
nel estimator to track the channel and an equalizer to mitigate
the ISI.

Among the most widely known approaches to channel
tracking and equalization are state-space based receivers. An
important characteristic of state-space receivers implemented
by the well-known Kalman filter (KF) [1] is its inherent abil-
ity to deal with nonstationary environments. Examples of the
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state-space formulation and the application of the Kalman fil-
ter in MIMO systems can be found in [2–5]. In [2] a Kalman
filter that uses the outputs of a minimum mean square error
(MMSE) decision-feedback equalizer (DFE) is developed to
track Rician MIMO frequency-selective channels. Channel
estimation using Kalman filters for MIMO-OFDM systems is
studied in [3, 4], while a Kalman turbo equalizer for quasi-
static MIMO channels is proposed in [5].

One problem of the usual schemes of separated channel
estimation and data detection is that, since the estimator and
equalizer use the estimates obtained from each other, the cor-
relation between the estimates of the channel and data sym-
bols can be significant [6]. Generally, this correlation is very
difficult to quantify and is usually ignored in the equalization
or detection process. Joint channel estimation and data detec-
tion schemes, on the other hand, do not present this problem
and usually have better performance.

An optimal approach to the problem of joint channel esti-
mation and data detection is to perform joint maximum like-
lihood (ML) estimation. The joint ML solution is obtained
through an exhaustive search procedure, in which channel
estimation is performed for each possible candidate data se-
quence. This approach, however, usually presents high com-
putational complexity, growing exponentially with the length
of the channel and the constellation size. For this reason, we
propose in this paper a state-space receiver that jointly per-
forms channel estimation and data detection in MIMO sys-
tems subject to fast frequency-selective fading. The proposed
receiver has a computational complexity that does not grow
with the constellation size and that is smaller than that of op-
timum joint ML scheme. As we will see in the following
sections, the joint formulation leads to a nonlinear observa-
tion equation, preventing the use of the standard KF. Hence,
we use the extended Kalman filter (EKF) [1] to compute re-
cursive estimates of the state variables.

Schemes similar to the one presented in this paper can be
found in [6–10]. Single-input/single-output (SISO) receivers
using the EKF to estimate the channel and equalize the re-
ceived signals are developed in [6–8]. As shown in a later sec-
tion, we can consider that the algorithms presented in [6,7] are



special cases of the method proposed here. In [9], the EKF is
employed to joint estimate the channel and the state transition
matrix, while channel and frequency offset in MIMO-OFDM
systems are jointly estimated in [10].

The rest of this paper is organized as follows: the system
model is presented in section 2. In section 3, we detail the
proposed receiver while in section 4, we present some simu-
lation results. Finally, section 5 concludes the paper.

2. SYSTEM MODEL

We consider a system with NT transmit antennas sending in-
dependent signals to NR receive antennas through a time-
varying MIMO channel with ISI and length L. The relation-
ship between transmitted and received signals in a time instant
k can then be written as

rk =
L−1∑
l=0

Hl,kxk−l + nk, (1)

where rk = [r(1)
k · · · r

(NR)
k ]T is the vector containing the sig-

nals observed in each receive antenna, xk = [x(1)
k · · · x

(NT )
k ]T

is the vector of transmitted symbols, Hl,k, l = 0, . . . , L − 1
represents the NR×NT matrix coefficients of MIMO channel
impulse response, nk = [n(1)

k · · · n
(NR)
k ]T contains samples

of additive, zero-mean, complex white gaussian noise with
covariance matrix R = σ2

nINR
, and IJ is the identity matrix

of order J .
If we stack N successive received vectors in a new obser-

vation vector r̃k = [rT
k rT

k−1 · · · rT
k−N+1]

T, it is possible to
rewrite (1) as

r̃k = Hkx̃k + ñk, (2)

with x̃k denoting the NT (N + L− 1) vector of concatenated
transmitted symbols, x̃k = [xT

k xT
k−1 · · · xT

k−N−L+2]
T, ñk =

[nT
k nT

k−1 · · · nT
k−N+1]

T is the length NRN noise vector and
H is an NRN × NT (N + L − 1) block Toeplitz matrix of
channel coefficients given by

Hk =


H0,k H1,k · · · HL−1,k 0 · · · 0
0 H0,k · · · HL−2,k HL−1,k · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 0 · · · H0,k · · · · · · HL−1,k


.

(3)
According to the widely used wide-sense stationary un-

correlated scattering (WSSUS) model [11], the channel co-
efficients are independent, zero-mean, complex gaussian ran-
dom variables with time autocorrelation function [2, 5–7, 12]

E
[
h

(i,j)
l,k

(
h

(i,j)
l,t

)∗]
≈ J0(2πfDT |k − t|), (4)

where h
(i,j)
l,k , i = 1, . . . , NR, j = 1, . . . , NT , l = 0, . . . , L − 1

is the (i, j) element of matrix Hl,k, J0 is the zero-order Bessel

function of the first kind, fDT is the normalized Doppler rate
(assumed the same for all transmit-receive antenna pairs) and
T is the baud duration. Hence, the normalized spectrum for
each channel tap is expressed as

S (f) =




1
πfDT

1√
1−

(
f

fDT

)2
, |f | < fDT

0, otherwise.
(5)

Although exact modeling of channel dynamics by finite
length autoregressive (AR) processes is impossible because
the time autocorrelation function (4) is nonrational and the
spectrum (5) is bandlimited, we can approximate the time
evolution of channel coefficients by low-order AR processes.
This is possible because the first few correlation terms of (4),
for small lags, capture most of the channel dynamics [2, 6].
Therefore, following [2, 6, 7, 12], we herein approximate the
MIMO channel variations by a first order AR process. Thus,
defining the length LNRNT channel vector hk by stacking
all columns of the channel matrices Hl,k, l = 0, . . . , L − 1,
i.e.,

hk =
[
h

(1,1)
0,k h

(2,1)
0,k · · · h

(NR,1)
0,k h

(1,2)
0,k · · · h

(1,NT )
0,k

· · · h
(NR,NT )
0,k h

(1,1)
1,k · · · h

(1,1)
L−1,k · · · h

(NR,NT )
L−1,k

]T

,

the time evolution of the channel is given by

hk = F1hk−1 + wk, (6)

where
F1 = βILNRNT

, (7)

β = J0(2πfDT ), wk is a vector of length LNRNT con-
taining independent samples of circularly symmetric, zero-
mean, gaussian excitation noise with covariance matrix W =
σ2

wILNRNT
, and σ2

w = (1− |β|2)Pk, with Pk = E
[
|h(m)

k |2
]
,

m = 1, . . . , LNRNT .
The speed of channel variations, quantified by β in (7),

is determined by the Doppler shift or, equivalently, by the
relative velocity between the NT transmit and the NR re-
ceive antennas. The greater the value of fDT , the smaller
the value of β, leading to faster channel variations. The mag-
nitude of these variations is controlled by σw. It is worth
mentioning that the model (6) can characterize time invari-
ant (fDT = 0) and time-varying (fDT > 0), as well as fre-
quency flat (L = 1) and frequency selective (L > 1) MIMO
channels.

It is also necessary to model the dynamics of the stacked
transmitted symbols vector x̃k. Observing that x̃k has a time-
shifting structure, its time evolution can be described by a
Markov-like process, where the current stacked transmitted
symbols vector is formed by shifting the previous one and
adding the current transmitted vector xk. Mathematically, this
is accomplished by writing

x̃k = F2x̃k−1 + uk, (8)



where the shift matrix F2 and the excitation noise uk are de-
fined, respectively, as

F2 =
[

0NT ×NT (N+L−2) 0NT ×NT

INT (N+L−2) 0NT (N+L−2)×NT

]
(9)

and
uk =

[
xT

k 01×NT (N+L−2)

]T
. (10)

The covariance matrix of uk equals

U = E
[
ukuH

k

]

= σ2
u

[
INT

0NT ×NT (N+L−2)

0NT (N+L−2)×NT
0NT (N+L−2)×NT (N+L−2)

]

(11)
and 0i×j denotes an i-by-j matrix of zeros. Notice that, as uk

is formed by symbols of a discrete alphabet, it is not gaussian.

3. PROPOSED RECEIVER

In order to develop a state-space receiver, we must first define
the state vector. Since we wish to jointly estimate the channel
coefficients and the transmitted signals, an obvious choice for
the state vector sk is

sk =
[
x̃T

k hT
k

]T
. (12)

Once the state vector sk is defined, we have to model the
dynamics of the state variables. Assuming that the transmitted
symbols are independent from the channel coefficients, it is
possible to write the state transition matrix from time k−1 to
time k, Fk,k−1, as a block diagonal matrix of the form

Fk,k−1 =
[

F2 0
0 F1

]
, (13)

where F2 is given by (9) and F1 by (7).
Therefore, combining (2), (6), (8), (12) and (13), we ob-

tain the state-space description of the problem of joint channel
estimation and signal detection in MIMO systems:

sk = Fk,k−1sk−1 + qk, (14a)

r̃k = C (k, sk) + ñk, (14b)

with

qk =
[
uT

k wT
k

]T
, Q = E

[
qkqH

k

]
=

[
U 0
0 W

]
,

(15)
and

C (k, sk) = Hkx̃k. (16)

Due to the choice of state vector made in (12), the ob-
servation equation (14b) becomes nonlinear on the state vari-
ables. This occurs because the received vector, r̃k in (14b),
depends now on the product between state variables, as can
be clearly seen from (16). Consequently, it is not possible

to directly apply the classical KF to estimate the state vector.
Instead, we can use the EKF to obtain recursive estimates of
state variables. The EKF, in fact, applies the standard KF to a
nonlinear system by linearizing the nonlinear functions about
the estimated state vector [1].

To accomplish the linearization of the nonlinear observa-
tion function C (k, sk) = Hkx̃k, we have to calculate the
Jacobian of C (k, sk) about ŝk|r1:k−1 , i.e., about the estimate
of sk, in the time instant k, based on the data observed from
the beginning to the time k − 1. The Jacobian is denoted by

[Ck]i,j =
∂ [C (k, sk)]i

∂ [sk]j

∣∣∣∣∣
sk=ŝk|r1:k−1

, (17)

where the element (i, j) of matrix Ck is obtained by differen-
tiating the ith row of Hkx̃k with respect to the state variable j.
Carrying out the computations in (17), the Jacobian Ck can
be expressed as

Ck =
∂(Hkx̃k)

∂sk

∣∣∣∣
sk=ŝk|r1:k−1

=


 Ĥk

ak ⊗ INR

ak−1 ⊗ INR

...
ak−N+1 ⊗ INR


 ,

(18)
where ak = [x̂T

k · · · x̂T
k−L+1] and ⊗ represents the Kro-

necker product. It is important to notice that ak and Ĥk are
formed, respectively, from estimates of x̃k and hk contained
in ŝk|r1:k−1 .

The expression (18) is quite general. In fact, the expres-
sions derived for SISO systems in [6,7] can be viewed as par-
ticular cases of (18) when NT = NR = 1.

Using (12)–(16) and (18), it is now possible to employ the
EKF to recursively estimate the transmitted symbols and track
the channel. The EKF is shown in the table of algorithm 3.1,
where Kk,k−1 is defined as

Kk,k−1 = E
[
(sk − ŝk|r1:k−1)(sk − ŝk|r1:k−1)

H
]
. (19)

Algorithm 3.1 Extended Kalman Filter (EKF)
Prediction step

ŝk|r1:k−1 = Fk,k−1ŝk−1|r1:k−1 (20a)

Kk,k−1 = Fk,k−1Kk−1,k−1FH
k,k−1 + Qk (20b)

Filtering step

Gk = Kk,k−1CH
k

[
CkKk,k−1CH

k + Rk

]−1
(21a)

αk = r̃k − C
(
k, ŝk|r1:k−1

)
(21b)

ŝk|r1:k = ŝk|r1:k−1 + Gkαk (21c)

Kk,k = [I − GkCk]Kk,k−1 (21d)

If we further develop (20a) and (20b) by using (7), (9),
(12), (13) and (15), the computational complexity of EKF can



be reduced since the matrix multiplications can be replaced by

ŝk|r1:k−1 = Fk,k−1ŝk−1|r1:k−1

=
[
0T

NT ×1 x̂T
k−1 · · · x̂T

k−N−L+2 βĥT
k−1

]T
,

(22)
and

Kk,k−1 =
 INT

0NT ×NT (N+L−2)+LNRNT

0NT (N+L−2)+LNRNT ×NT

A1 B1

C1 D1


,

(23)
where

A1 = Kk−1,k−1 (1 :P1, 1:P1) ,

B1 = βKk−1,k−1 (1 :P1,P2 :P3) ,

C1 = βKk−1,k−1 (P2 :P3, 1:P1) ,

D1 = β2Kk−1,k−1 (P2 :P3,P2 :P3) + σ2
wILNRNT

,

P1 = NT (N + L − 2), P2 = NT (N + L − 1) + 1, P3 =
NT (N + L − 1) + LNRNT , and the notation Kk−1,k−1(i :
j, k : l) follows the MATLAB notation and represents a sub-
matrix of matrix Kk−1,k−1 formed by taking its rows i to j
and columns k to l.

Recalling from the state vector definition (12) that the es-
timated stacked transmitted signals vector is of the form

ˆ̃xk =
[
x̂T

k x̂T
k−1 · · · x̂T

k−N−L+2

]T
, (24)

we find that ŝk|r1:k contains information not only about the
currently transmitted symbol vector x̂k but also about the sym-
bol vectors corresponding to the previous N + L − 1 time
instants. Hence, the final estimated vector x̂k at instant k
is obtained by averaging the corresponding transmitted sym-
bol estimates contained in state estimates from time k to time
k+N +L−2. The detected symbol vector is then obtained by
passing this final averaged symbol vector through a decision
device.

4. SIMULATION RESULTS

In this section, simulation results are presented to illustrate
the performance of the proposed semi-blind, reduced com-
plexity, state-space receiver. For comparison purposes, the
performance of a receiver composed by an LMS channel es-
timator and a Kalman equalizer (referred to as LMS+KF re-
ceiver in this section), operating iteratively, is also shown.

We consider a baseband digital communication system
with 2 transmit antennas sending 3×106 independent, 4-QAM,
symbols to 4 receive antennas. Each data block is formed by
25 training symbols followed by 125 information symbols.
As we focus on semi-blind schemes, both EKF and LMS+KF
receivers continue updating the channel estimates after the
end of the training sequence. Specifically, for the LMS+KF
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Fig. 1. Mean square error of channel tracking.

receiver, the LMS estimator first estimates the channel us-
ing the training sequence. When the information symbols are
transmitted, the LMS channel estimator works in a decision-
directed mode, using the symbol estimates generated by the
Kalman equalizer.

We simulate two MIMO frequency-selective channels with
L = 2 taps of equal average power of 0 dB. In the first
scenario, we use a normalized Doppler rate fDT = 0.001
while in the second, we use fDT = 0.01. The observa-
tion vector r̃k is formed by stacking N = 6 received vec-
tors when fDT = 0.001 and N = 10 received vectors when
fDT = 0.01. It is also assumed that the receivers know
the noise variance σ2

n. The results presented in this section
correspond to an average of ten channels realizations. Also,
simulation results indicate that, on average, the EKF imple-
mented with (22) and (23) performs 10% faster than the EKF
using (20a) and (20b).

The mean square error (MSE) of channel tracking for both
receivers, as a function of SNR per receive antenna, is shown
in Fig. 1. We clearly see that the LMS estimator, with a step
size of 0.015, is not able to track the channel variations. In
fact, the MSE of the LMS channel estimator is almost con-
stant for the whole SNR range considered. The proposed re-
ceiver, on the other hand, presents an almost linear decrease
of MSE with the SNR. For an SNR greater than 20 dB, the
EKF shows similar MSE for both Doppler rates, indicating
that it can track fast channel variations.

Figure 2 presents the symbol error rates (SER) of EKF and
LMS+KF in both simulation scenarios. We also plot the SER
of a Kalman equalizer with perfect knowledge of channel
state information (KF-CSI), i.e., perfect channel knowledge.
As expected, all receivers have better performance for slower
channel variations (smaller fDT ). It can be observed that the
performance of the proposed joint receiver is superior to that
of LMS+KF. For an SER of 10−3, the difference between the
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EKF and the KF-CSI is about 6 dB for fDT = 0.001 and
9 dB for fDT = 0.01. The LMS+KF, on the other hand, does
not reach a SER smaller than 10−1. This can be explained
by the poor channel estimates provided by the LMS estima-
tor. With these channel estimates, the Kalman equalizer is
not able to correctly detect the transmitted symbols. The er-
roneous detected symbols are fed back to the LMS estimator,
degenerating the new channel estimates.

5. CONCLUSIONS

In this paper, we propose a reduced complexity state-space,
semi-blind method to jointly perform channel estimation and
data detection in MIMO systems. In the developed state-
space formulation, the observation equation is nonlinear since
we assume that transmitted symbols and channel coefficients
are state variables. This nonlinearity leads us to the use of
extended Kalman filter to obtain recursive estimates of the
state variables. One advantage of the proposed receiver over
other joint schemes is that the computational complexity of
the EKF does not grow with the constellation size. Simula-
tion results indicate that the joint receiver presented in this
paper is able to track fast channel variations. The results also
illustrate the superiority of EKF over a receiver using an LMS
channel estimator and a Kalman equalizer.
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