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Abstract—This paper introduces a turbo-fuzzy equalizer receivers, the redundancy added by the codes is not used by
(TFEQ) to cope with the inter-symbol interference effects ad  the equalizer to mitigate ISI. Consequently, equalizatiod

impulsive noise occurrences in bandlimited digital commuita- decoding are carried out separately. The receiver perfocma
tion channels, such as the indoor and outdoor power line cingits. )

We exploit a close relationship between the fuzzy and Bayesi could be greatly improved if these two task_s Were J_O'ntly
equalizers to derive an adaptive nonsingleton turbo-fuzzyequal- Performed. A successful approach to do this is to iterate
ization technique. Generally speaking, the TFEQ is obtaing by between the equalizer and channel decoder several times on
introducing an adaptive decision feedback nonsingleton fzzy the same set of received data. This method, known as turbo

equalizer into the turbo equalization structure. Simulation results equalization, was first proposed by Douillard et al. [3]
reveal the applicability of this approach to overcome the nise ’ C

impairments in the power line frequency range for broadband Hence, aiming at the development of new signal processing

applications. techniques to cope with the PL channel impairments and to
Keywords— Turbo equalization, fuzzy systems, Bayesian equal- achieve a higher spectral efficiency, this contributiorspres
izer, nonlinear equalization. a turbo-fuzzy equalizer for PL channels. The derived egaali
uses an adaptive nonsingleton fuzzy filter with variablg@-ste

. INTRODUCTION size. The advantages offered by the proposed technique are:

. S i) it can deal with the presence of impulsive noise at the
OWER Line Communications (PLC) have reCentI)(/:utputPLchanneIsbetterthan an adaptive and singletbotur

emerged as a highly regardegl capdldate fpr .'n_ho."uzZy equalizer. Note that this singleton turbo-fuzzy dipea
local area and rural broadband multimedia transmissionsi d . L
][owdes the same results obtained by a turbo equalization

power line (PL) channels present the appealing benefits Eechni ue implemented with a specific adaptive Bayesian
low cost access network installation, due to the use of wide q b P b Y

L . - equalizer, and ii) it provides improved performance duéht t
deployed power line infrastructure, and theoretical cajesc . . :
use of variable step-size for each fuzzy equalizer parasete
that can surpass 1 Gbps [1].

As a result, a great deal of attention has been devoted.(%gmparlson results between the proposed turbo-fuzzy equal

model PL channel properties. These researches have defar- and the one derived from a Bayesian assumption (adaptiv

. o . vérsion of the turbo equalizer proposed in [4]) verify thae t
mined that PL channels always present: i) attenuation prop . . . .
. . R . ormer provides a considerable improvement in terms of BER.
tional to frequency and distance; ii) time-varying behayiid)

hiah i . N . This paper is organized as follows. Section Il formulates th
igh impedance varying with time and frequency; iv) strongL channel equalization problem. Section Il presents some
impulsive noise presence due to switching on/off of electri d P ' P

loads; and v) frequency selectivit Important issues related to fuzzy systems. Section 1V dises|
' q Y Y. the proposed turbo-fuzzy equalizer and computationalltsesu

The increasing demand for high spectral efficiency modu-

lation has demanded continuous system evolution in orderalt[)e presented in Section V. Finally, concluding remarks are

improve performance. One of the major obstacles that hig%fate‘j in Section V.
rate systems must overcome is the fact that increasing data
rates through bandlimited channels introdudeter-symbol ] ] ) o ]
interference (ISI), which drastically degrades the received A discrete-time, linear, causal and time-invariant model
signal. For bandlimited PL channels, the occurrence of hi@h Paseband PL channels foroadbandPLC (BoPLC) and
power impulsive noise exacerbates the degradation. narrowbandPLC (NaPLC) applications is given by

The use of powerful channel coding and modulation tech- Ln—1
niques to cope with the aforementioned problems in PL chan-  y(n) = g(n) + v(n) = Z h(i)z(n —i) +v(n), (1)
nels has been investigated in [2]. However, in conventional i=0

Il. PROBLEM FORMULATION

This work was supported in part by CNPq, in part by FAPESP,iarghrt whereg(n)_ Fje”Ot?S the PL Cha_nnel output free of no-'s(el’)
by FAPEMIG, all from Brazil. is the additive noise representing the sum of background and



impulsive noises{h(n)}= ;" is the bandlimited, dispersive, Fuzzy Rule
and linearfinite impulse responséFIR) of the PL channel, Crisp Base Crisp
and the sequencix(n)} consists of transmitted symbols. For Inputs ~ —output
the frequency range frofL5 to 30.0 MHz, impulse responses x(_n)> Fuzzifier Defuzzifer _y(>n)
based on multipath approach can be derived from [5]. A

By considering &inary phase shift keyin(BPSK) constel- in;ﬁf?éts lnEfflrgeI;lge fuzzy
lation for a single-carrier or @ode division multiple access output sets

(CDMA) system, the transmitted sequenge(n)} is taken

from {+1, -1}, and it is assumed to be an equiprobable and
independent sequence. The channel outputs observed by the
equalizer can be written 3gn) = [y(n)---y(n — L, + 1)]T,

while the equalizer impulse response can be written as
w(n) = [w(n)---w(n — L, +1)]T . The vector of the trans- The PL channels introduce strong ISI. Also, the deep
mitted symbols that influence the equalizer decision is eftequency notches present in the channel transfer function
pressed byx(n) = [#(n)---#(n — L, — L, + 1)]*. As a prevent the use of linear equalizers, as the noise enhamteme
result, there arer, = 25»+Lw possible combinations of thethey cause is a serious drawback on noisy channels. In these
channel input sequence, ang different values of the noise- cases,decision feedback equalize(®FEs) are an attractive
free channel output vectgr(n) = [y(n) ---y(n — L, + 1)]*  alternative. Against the use of DFEs is the fact that PL
are possible. Each of these noise-free channel outputnisctochannels have long and varying impulse responses and strong

Fig. 1. Basic components of a Fuzzy system.

IIl. Fuzzy SYSTEMS. IMPORTANT ISSUES

called channel output state vec§y(n), j = 1,--- ,n, given noise bursts, concentrated in both time and frequency. The
by noise bursts may cause catastrophic error propagatiorthand
y;(n) = Hx;(n), (2) fasttime variations may not allow channel parameter tragki

- . when adaptation cannot be fast enough. In this regard, the us
wherex;(n) = [z(n) ---2(n—Ln+ Ly +1)]" denotes théth  of other kinds of nonlinear equalizers capable of copingiwit
pOSSIble |npUt vector anH is the channel convolution matrix Strong noise bursts as well as |Ong and fast-varying impu|se

given by responses is of interest. Among the nonlinear equalif@zgy
ho hi -+ hi,_1 0 systems(FS) havg been widely applied_in cpmmunication
0 ho - hi,1 o 0 channels presenting the aforementioned impairments [8].
H-= ) ) ' , (3 Generally speaking, fuzzy systems are nonlinear systems

: : : capable of inferring complex nonlinear relationships hestw
0 0 ho - hp,—2 hr,—1 input and output variables. They do not make any assumptions
regarding the structure of the process, nor do they involge an
kind of probabilistic distribution model, i.e., they bebprio
%Qe general family of model-free, data-driven, nonparaimet
methods. The basic building blocks of a fuzzy system, illus-
trated in Fig. 1, are the fuzzifier, the fuzzy rule base, the
inference engine, and the defuzzifier. The fuzzy rule base is
a group of rules that are combined in the inference engine
frly(n)) = *IHY(T”*S’ICHZ to produce a fuzzy output. In essence, the inference engine
&Eyd exf’( ) produces mappings from fuzzy sets to fuzzy sets whereas the
fuzzifier maps the inputs into fuzzy sets, which are subse-
T exp (M) ~ Y exp (M) quently used as inputs to the inference engine. Finally, the

The equalizer output(n —d) is an estimate of the transmitted
symbol, delayed byl samples.

If the additive noise is modeled by a random proce
with normal distribution as\'(0, #2), the normalized optimal
bayesian equalizgfNOBE) given the observation vectg(n)
is defined by [6]

g€V 2o FiEVT 20 defuzzifier is responsible for mapping the fuzzy sets yiglde
4) by the inference engine into crisp numbers.
whereY) = {y;, i=1,--- ,2k+tlv=lg(n—d) = +1}and  The exact mathematical structure of FSs depends mainly
Yy ={y;, j=2brtle141 ... 2lntluw|y(n—d) = -1} on four choices namely, type of fuzzification, membership
denote the state space composed gflength vectorsy; given functions, inference mechanism, and defuzzification egat
thatz(n—d) = +1 andxz(n—d) = —1, respectively, and; = Assuming singleton fuzzification and a proper choice of the

ViuY, ={¥k}, 1 <k <ng=2LnTLw denotes the set of other parameters, it is possible to show [8] that the singlet
all possible channel output state vectors. A decision faeklb fuzzy system, operating as a transverse or feedback symbol-
version of NOBE is obtained assuming that the equalizertinpdecision equalizer, results in the normalized Bayesiantisol
vector is composed of output channel samples along with pésat achieves a probability of misclassification very close
equalizer decisions [7]. the one attained with Bayesian equalizer derived from the
In the following section, we present some basic ideas omaximum likelihood(ML) criterion. Then, we can affirm
fuzzy systems as well as the fuzzy equalizers we used in dhat (4) can be surprisingly seen as a fuzzy system if some
simulations. restrictions are taken into account. In fact, if one assumes



singleton fuzzification, Gaussian membership functionexim The main advantage offered by NONFE is that nonsingleton
product composition, product implication, and height defu fuzzy system are capable of dealing with uncertainties in
fication, then the output of the normalized singleton typethe input data. From the telecommunication point of view,

fuzzy equalizer is given by [9] it sounds quite difficult to understand because the used con-
foly(n)) = 1 straints to obtain NOBE_from the NONFE. _ _

= Li‘lexp<(y(ni>2yk(i>>2> However, \_/vhen the singleton fuzzy system is dgrlved we

¥}, Vg i=0 2wk do not take into account the uncertainties on the input data

Lu—1 . . into the fuzzy system formulation because singleton fuzzy

ST0> exp (_(”(";M) (5) systemis unable to do it. Although, some authors have derive

y,€y; =0 Ff some relations between singleton fuzzy systems and Bayesia

L1 _ e equalizers, we can state that those relations are not based o

> exp ( y(”;lz)*yk(z)) ) a fuzzy perspective. As a result, few people have noted the

y, €y =0 Ff strength that nonsingleton fuzzy system can offer for dlgit

communication. Overall, we can say that the nonsingleton

are the variance and the mean of ttteGaussian membershipfu.ZZy systems are .the only fuzzy system capable of dealing
with uncertainties in the input data and, as a result, can

function of thekth rule of the fuzzy system. Now, assumlng1mprove the equalization performance. Two advantagesaiffe

thatopr = of andyy, = [yx(0) yx(1) -+ yu(Lw — 1)]" = : - C
.. Where 3, is the PL channel vector state defined irl?y nonsingleton fuzzy equalizers are: i) faster convergeate

Section Il. These assumptions mean that the variances oftgﬁm those obtained with singleton fuzzy equalizers bataus

. ) nonsingleton fuzzy equalizer can handle uncertaintieshé t
membership functions are the same and equal to the naise .
. INput data and ii) lowermean square errorMSE at the

variance at the PL channel output and the centers of these . . R
€qualizer output than the MSE value attained with singleton

Sfuzzy equalizers if the input data is corrupted by nonGaussi

of the kth output PL channel vector statg, = 1,--- ng, . : .
. . . . oise because nonsingleton fuzzy equalizers can model the
which was defined in Section Il. As a result, we can concluclg]r(]a Ut uncertainties
that (5) and (4) are equal under the aforementioned conttrai put L ' . .
As it was well-posed in [10], nonsingleton fuzzy systems

In other words, NOBE can be seen as a particular case of a . . . =2
are especially useful in cases where the available traitétg,

fuzzy equalizer. Also, we can note that this singleton fuzz  the input data to the fuzzy logic system, are corrupted by

Egg?lﬁer[ﬁ equal to normalized version of the the eqUIaIIZrefoise. Conceptually, the nonsingleton fuzzifier impliest tine

. e . given input value is the most likely value to be the correa on
If we now assume nonsingleton fuzzification, Gaussi

; . - . from all the values in its immediate neighborhood; however,
membership functions, max-product composition, prodonet i ; . X . . .
o . o : . because the input is corrupted by noise, neighboring points
plication, height defuzzification, Gaussian membershipcfu .
are also likely to be the correct values, but to a lesser degre

tions modeling the uncertainty of the input data and fuzzy o g
rules ands, a t-norm named product of a nonsingleton type-1 A type-1 fuzzy system-based decision feedback equalizer

. X . can be easily derived. Essentially, the idea is to employ a
FS [10], then the output of thisormalized nonsigleton fuzzy : -
equalizer(NONFE) is given by [6] feedback filter of orded, = L; + L, — 2 — d, so that the

feedback vector hasg, = 2%+ states. Thus, the channel states,

wherey(n — i) is PL channel output sample@%k andy (i)

fns(y(n)) = P ! — Va4, can be partitioned inta; subsets. The new positive and
&Eyd £ o (W) negative channel states are given by
Lo—1 (i) ()2 Vit ={y()z(n —d)=+1N&(n —d)=+1} (7)
—(y(n—1)—7gx (1 _
. %}* ZZ:O exp( 2(a§+aiik) ) (6) and
k d
S szflexp ((yz(nzi)gk(i))2> Y, ={y()z(n—d)=-1n&n-d)=-1} (8)
§,ev; =0 @utor) The related number of states ) "and Y, ~ becomes
wherey(n — i) is PL channel output samples;,. andy (i) Nins = s _ gd+1 9)
are the variance and the mean of ttteGaussian membership b

function of thekth rule of the fuzzy systemr, is the standard It is obvious that the feedback vector reduces the number of
deviation of the membership function that is used to model tikthannel states required for decision purposes, as original
uncertainty at the input data. proved for a Bayesian equalizer implemented by using a RBF
If one compares (5) and (6), it possible to see that the ontgtwork [7].

difference between both of them is the introduction of thente  Adaptive version of these equalizers are also easily derive
05. In this case, ifo, = 0, then f,s(y(n)) = fs(y(n)). As with backpropagation algorithm. However, we have noted tha
a result, the NONFE can be reduced to the NOBE. Now, tl@proved convergence rate is attained with a variable sizp-
big question is: Why should we replace NOBE by NONFEMethod. In this regard, theelta-bar-delta(DBD) method [11]



is a good candidate for updating the step-size associatid vére usually expressed in termslof likelihood ratios(LLR),
each equalizer's parameters. DBD provides high convemenehose definition for binary symbols is:

rates as it tries to find the proper learning rate to compensat P o = +1
for small magnitude of the gradient in the flat regions and to L(zy) =In M
dampen the large free parameter changes in deep regions. The Pz = —1ly)

DBD consists of a parameter vector-updating rule performeghe sign of the LLR gives the estimated symbols while their
by a modified backpropagation procedure and a learing rai@plitudes indicate the reliability of these decisions.
rule defined by The interleaver plays a key role in an iterative scheme since
o . it permutes the symbols in a given data block, allowing tempo
Aw(n + l)v;(_((l )_)jé_) dfg{ﬁo)(n)””up’l(n)} (10) ral error sequence distribution to be modified [13]. Morapve
win aswin it decorrelates the inputs of both decoder and equalizey and
and consequently, enables theriori information to be considered
as independent information for the equalization process.

(12)

R i /\_i(” = DAi(n) >0, A turbo equalizer operates as follows. In the first iteration
pi(n+1) =9 —éui(n), if Ai(n —1)Ai(n) <0 , (11) there is noa priori knowledge about the coded bits, so the
0, otherwise equalizer computes the a posteriori probabilities givety on
the received symbols. From thes@osteriorivalues,extrinsic
respectively,  where = 0,...P — 1, information (L7 (z,)) for each bit is calculated by subtracting
w(n) =[ wo(n) --- wp_1(n) ]* denotes the vector thea priori information from the corresponding equalizer out-
constituted by all parameters of a fuzzy equalizeput. Theextrinsicinformation is the incremental information
p(n) = [ po(n) --- pp_1 ()] is the learning rate about the current bit obtained through the detection/diegod

vector; Aw(n + 1) = w(n + 1) — w(n); « is the momentum from all the other bits in a data block. The soft output from
rate, \i(n) = 0J(w(n))/0w;(n) is the partial derivative the equalizer is then de-interleaved and passed to the ehann
of a considered cost function with respect4g(n) at the decoder that further generates new LLR’s. Finally, a new set
nth iteration, \i(n) = (1 — d)\i(n) + dXi(n — 1) is an of extrinsic information 2 (z;)) is computed, interleaved
exponential average of the current and past derivativegd fed back to the equalizer, which treats it asaapriori
J(w(n)) = 3[z(n + d) — &(n)]?, wherexz(n + d) and2(n) information for the next iteration. The steps above are atguk
are the transmitted symbol delayed bysamples and the until a chosen termination criterion, like a maximum number
estimated symbol at the receiver side, respectively. of iterations, is reached.

In Section 1V, a turbo-fuzzy technique making use of |t is well known that the most suitable equalizers for turbo
decision-feedback nonsingleton fuzzy system, whose paramnaqualization are implemented by the MAP algorithm. Unfertu

ters are updated by DBD rule is discussed. nately, these algorithms have a computational compleky t
grows exponentially with the length of the channel impulse
IV. TURBO-FUzzYy EQUALIZER response. In the case of PL channels, these equalizers becom

unfeasible because PL channels are very long. Hence, simple

In the turbo approach, it is assumed that the _infprmation Rear or nonlinear suboptimal structures, like those pssul
encoded by an error-control code before transmission. $he |51 [4], [13]-[15] are devised to deal with this problem

channel is modeled by a discrete-time linear filter as in (1  Additionally, PL channels suffer from high power impulsive
which can be regarded as arate R = 1, non-systematic, ppssi% '
time-varying, convolutional code with complex valued cdde
symbols. From this point of view, the channel encoder and t
channel form a serially concatenated scheme, which can
decoded by an iterative (“turbo”) algorithm. So, the ecquedi

and the channel decoder act as the inner and the outer decoder _ Binary

ises, which deteriorates the performance of linear épral
On the other hand, nonlinear devices, like the fuzzy filters
%escribed in section lll, are well-suited for these chasnel

respectively. This is shown in Fig. 3, wheggn) represents PRy el LR pertver (" 151 channe Vo

the signal at the output of the channel corrupted by a zero outer ot A

mean additive white Gaussian noisg:) with varianceo?. P
As in turbo coding, the receiver components aoét-input

soft-output (SISO) devices that exchange soft information bi fﬂ L) L) [ g e

iteratively between them. They are classically impleménte Decoder (47| Denterlemver < Equalizer

using conventionah posteriori probability(APP) algorithms,

based on the optimal BCIR-MAP decoder [12]. The SISO
equalizer must accept not only channel values but aso LP,(xy) La(x)
priori information about the symbols to be detected. This >
a priori information is provided by the channel decoder at
the previous iteration. The outputs of these SISO companent Fig. 2. Transmitter and receiver in a turbo equalizer.




From the

channel V. PERFORMANCE EVALUATION
z Zz [ T Tz
To evaluate the performance of the proposed turbo-fuzzy

equalizers in PL channels, blocks of information bits were
Decision Feedback Fuzzy Equalizer encoded by a rat® = 1/2 recursive sistematic convolutional
(RSC) code, with generator polynomials equal to 23 and 35,
N expressed in octal. The coded bits were BPSK modulated
0 -
Z

and permuted by a random interleaving of size= 10000.
The BCJR-MAP algorithm was used to implement the de-
BCJR- MAP — J coder. In all simulations, 10 turbo iterations per received
Estimated bits Decoder data block were performed. We also used fuzzy equalizers
with 10 forward and 10 feedback inputs and each input had
ing 20 Gaussian membership functions. We considered that the
noise was composed by white gaussian background noise and
impulsive noise, modeled as in [16].
We considered data transmission through the channel whose
frequency response is shown in Fig. 4. Thi¢ error rate
) ) ) ) _ (BER) curves, computed as a function of tksignal to noise
Hence, in order to provide a low complexity solution withzayig of the background noise, for four different turbo-fuzzy
out performance degradation, this paper proposes thelintfo oqajizers are shown in Fig. 5. In this figure, we can see that,
tion of a decision feedback nonsingleton type 1 fuzzy equajfier the last iteration, the nonsingleton turbo-fuzzy aliger
izer, discussed in Section III_, into a turbo equahzaudnspe. with variable step-size had the best performance, followed
The structure of the nonsingleton turbo-fuzzy equalizer i§, the singleton equalizer with variable step-size and ey th
depicted in Fig. 3. One can note thatpriori information nonsingleton equalizer with fixed step-size. Also, we retic
is incorporated into the structure of the fuzzy equalizer gt the performance of these three equalizers are muakr bett
feedback inputs. As in a traditional turbo equalizer, d@Iringan that of a singlenton equalizer with fixed step-size that

the first iteration there is na priori knowledge about the js gqual to the normalized version of the turbo equalization
received symbols. As a result, the feedback inputs in F'g-t@’chnique proposed in [4].

are zero. However, to accelerate the convergence and reduggyr 3 BER of 10-3. the nonsingleton DBD equalizer is

the computational load, a classical decision feedbacktre  5nproximately 2.5 dB better than the equalizers with fixed
is employed, so that the soft outputs from the equalizer aRp-size and for a BER of0—%, the nonsingleton DBD
fed back to its inputs. In the ensuing iterations, the feebagqualizer is approximately 6 dB better than the singleton
information is provided by the decoder. In the other wordgqyajizer with fixed step-size, 2.5 dB better than the nons-
subsequent iterations offers to the fuzzy equaliaepriori  ngleton equalizer with fixed step-size and 1 dB better than
information about the received symbols in accordance to the, singleton DBD equalizer. Hence, we can conclude that the
turbo principle. As a result, good performance can be &thinyariation of the step-size can greatly improve the perfarcea

as will be discussed in Section V. of fuzzy equalizers.

Turbo-fuzzy equalizers require another change from tradi-We plot in Fig. 6 the BER curves at the output of the
tional turbo systems. Indeed, in traditional turbo systéhgs decoder. We can observe that, except for the singleton equal
soft information provided by the decoder is in the form ofzer with fixed step-size, the turbo-equalizers could recov
LLR of the interleaved coded bits, while the fuzzy equalizahe transmitted information without any error fat, /N,
expects estimated values of the transmitted symbols. Thegeeater than 10 dB. This clearly shows the advantage of using
fore, a mapping of the soft information in this feedback looponsingleton equalizers and variable step-size over esiogl
is required [13], [14]. This is possible by computing théixed step-size fuzzy equalizers.
expectation of each transmitted symbol. Using (12) and the
fact that P(z, = +1|y) + P(z, = —1Jy) = 1 for BPSK VI. CONcLUSIONS
modulation, we have: In this paper, we propose turbo-fuzzy equalizers to miéigat

the detrimental effects of PL channels. We develop singleto

Fig. 3. Turbo-Fuzzy Equalizer.

Lo(zn) and nonsingleton fuzzy equalizers with fixed and variable
Tp = Z zP (z), = z|y) = tanh (T) (13) step-sizes and compare them to evaluate their performance
z€EB when all of them are applied to PLC single-carrier systems.

The comparison results reveal that the proposed nonsinmglet
where B = {41, —1} is the modulation alphabet arfd, (z,,) turbo-fuzzy equalizer with variable step-size providesoa-c
is thea priori information provided by the decoder. Althoughsiderable improvement compared with the other techniques.
the soft outputs from the equalizer are not in LLR form, theln fact, as stated before, nonsingleton fuzzy system is an
contain the same information as the LLR, as there is a orappropriate technique to deal with problems in which thedat
to-one mapping between both values. are corrupted by noise. Another interesting contributiefiers
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