
Turbo-Fuzzy Equalization for Single-Carrier Power
Line Channels

Moisés V. Ribeiro
Dept. of Electrical Circuit

Federal University of Juiz de Fora
Juiz de Fora MG, 36036-330, Brazil

mribeiro@ieee.org

Murilo B. Loiola, Renato R. Lopes
Dept. of Communications

School of Electrical and Computer Engineering
University of Campinas, Campinas, Brazil
{mloiola,rlopes}@decom.fee.unicamp.br

Abstract— This paper introduces a turbo-fuzzy equalizer
(TFEQ) to cope with the inter-symbol interference effects and
impulsive noise occurrences in bandlimited digital communica-
tion channels, such as the indoor and outdoor power line circuits.
We exploit a close relationship between the fuzzy and Bayesian
equalizers to derive an adaptive nonsingleton turbo-fuzzyequal-
ization technique. Generally speaking, the TFEQ is obtained by
introducing an adaptive decision feedback nonsingleton fuzzy
equalizer into the turbo equalization structure. Simulation results
reveal the applicability of this approach to overcome the noise
impairments in the power line frequency range for broadband
applications.

Keywords— Turbo equalization, fuzzy systems, Bayesian equal-
izer, nonlinear equalization.

I. I NTRODUCTION

POWER Line Communications (PLC) have recently
emerged as a highly regarded candidate for in-home,

local area and rural broadband multimedia transmissions since
power line (PL) channels present the appealing benefits of
low cost access network installation, due to the use of widely
deployed power line infrastructure, and theoretical capacities
that can surpass 1 Gbps [1].

As a result, a great deal of attention has been devoted to
model PL channel properties. These researches have deter-
mined that PL channels always present: i) attenuation propor-
tional to frequency and distance; ii) time-varying behavior; iii)
high impedance varying with time and frequency; iv) strong
impulsive noise presence due to switching on/off of electric
loads; and v) frequency selectivity.

The increasing demand for high spectral efficiency modu-
lation has demanded continuous system evolution in order to
improve performance. One of the major obstacles that high-
rate systems must overcome is the fact that increasing data
rates through bandlimited channels introducesinter-symbol
interference (ISI), which drastically degrades the received
signal. For bandlimited PL channels, the occurrence of high
power impulsive noise exacerbates the degradation.

The use of powerful channel coding and modulation tech-
niques to cope with the aforementioned problems in PL chan-
nels has been investigated in [2]. However, in conventional
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receivers, the redundancy added by the codes is not used by
the equalizer to mitigate ISI. Consequently, equalizationand
decoding are carried out separately. The receiver performance
could be greatly improved if these two tasks were jointly
performed. A successful approach to do this is to iterate
between the equalizer and channel decoder several times on
the same set of received data. This method, known as turbo
equalization, was first proposed by Douillard et al. [3].

Hence, aiming at the development of new signal processing
techniques to cope with the PL channel impairments and to
achieve a higher spectral efficiency, this contribution presents
a turbo-fuzzy equalizer for PL channels. The derived equalizer
uses an adaptive nonsingleton fuzzy filter with variable step-
size. The advantages offered by the proposed technique are:
i) it can deal with the presence of impulsive noise at the
output PL channels better than an adaptive and singleton turbo-
fuzzy equalizer. Note that this singleton turbo-fuzzy equalizer
provides the same results obtained by a turbo equalization
technique implemented with a specific adaptive Bayesian
equalizer, and ii) it provides improved performance due to the
use of variable step-size for each fuzzy equalizer parameters.
Comparison results between the proposed turbo-fuzzy equal-
izer and the one derived from a Bayesian assumption (adaptive
version of the turbo equalizer proposed in [4]) verify that the
former provides a considerable improvement in terms of BER.

This paper is organized as follows. Section II formulates the
PL channel equalization problem. Section III presents some
important issues related to fuzzy systems. Section IV discusses
the proposed turbo-fuzzy equalizer and computational results
are presented in Section V. Finally, concluding remarks are
stated in Section VI.

II. PROBLEM FORMULATION

A discrete-time, linear, causal and time-invariant model
of baseband PL channels forbroadbandPLC (BoPLC) and
narrowbandPLC (NaPLC) applications is given by

y(n) = ỹ(n) + v(n) =

Lh−1∑

i=0

h(i)x(n − i) + v(n), (1)

whereỹ(n) denotes the PL channel output free of noise,v(n)
is the additive noise representing the sum of background and



impulsive noises,{h(n)}Lh−1
n=0 is the bandlimited, dispersive,

and linearfinite impulse response(FIR) of the PL channel,
and the sequence{x(n)} consists of transmitted symbols. For
the frequency range from0.5 to 30.0 MHz, impulse responses
based on multipath approach can be derived from [5].

By considering abinary phase shift keying(BPSK) constel-
lation for a single-carrier or acode division multiple access
(CDMA) system, the transmitted sequence{x(n)} is taken
from {+1,−1}, and it is assumed to be an equiprobable and
independent sequence. The channel outputs observed by the
equalizer can be written asy(n) = [y(n) · · · y(n − Lw + 1)]T,
while the equalizer impulse response can be written as
w(n) = [w(n) · · ·w(n − Lw + 1)]T . The vector of the trans-
mitted symbols that influence the equalizer decision is ex-
pressed byx(n) = [x̂(n) · · · x̂(n − Lh − Lw + 1)]T. As a
result, there arens = 2Lh+Lw possible combinations of the
channel input sequence, andns different values of the noise-
free channel output vector̃y(n) = [ỹ(n) · · · ỹ(n − Lw + 1)]T

are possible. Each of these noise-free channel output vector is
called channel output state vectorỹj(n), j = 1, · · · , ns given
by

ỹj(n) = Hxj(n), (2)

wherexj(n) = [x(n) · · ·x(n−Lh +Lw +1)]T denotes thejth
possible input vector andH is the channel convolution matrix
given by

H =




h0 h1 · · · hLh−1 · · · 0
0 h0 · · · hLh−1 · · · 0
...

...
...

0 0 h0 · · · hLh−2 hLh−1


 , (3)

The equalizer output̂x(n−d) is an estimate of the transmitted
symbol, delayed byd samples.

If the additive noise is modeled by a random process
with normal distribution asN (0, σ2

v), the normalized optimal
bayesian equalizer(NOBE) given the observation vectory(n)
is defined by [6]

fb(y(n)) = 1
P

ỹk∈Yd

exp

„

−‖y(n)−ỹk‖
2

2σ2
v

«





∑

ỹi∈Y+
d

exp
(

−‖y(n)−ỹi‖
2

2σ2
v

)
−

∑

ỹj∈Y−

d

exp
(

−‖y(n)−ỹj‖
2

2σ2
v

)



(4)

whereY+
d = {ỹi, i = 1, · · · , 2Lh+Lw−1|x(n−d) = +1} and

Y−
d = {ỹj , j = 2Lh+Lw−1 +1, · · · , 2Lh+Lw |x(n−d) = −1}

denote the state space composed ofLw-length vectorsyi given
thatx(n−d) = +1 andx(n−d) = −1, respectively, andYd =
Y+

d ∪ Y−
d = {ỹk}, 1 ≤ k ≤ ns = 2Lh+Lw denotes the set of

all possible channel output state vectors. A decision feedback
version of NOBE is obtained assuming that the equalizer input
vector is composed of output channel samples along with past
equalizer decisions [7].

In the following section, we present some basic ideas on
fuzzy systems as well as the fuzzy equalizers we used in our
simulations.
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Fig. 1. Basic components of a Fuzzy system.

III. F UZZY SYSTEMS: IMPORTANT ISSUES

The PL channels introduce strong ISI. Also, the deep
frequency notches present in the channel transfer function
prevent the use of linear equalizers, as the noise enhancement
they cause is a serious drawback on noisy channels. In these
cases,decision feedback equalizers(DFEs) are an attractive
alternative. Against the use of DFEs is the fact that PL
channels have long and varying impulse responses and strong
noise bursts, concentrated in both time and frequency. The
noise bursts may cause catastrophic error propagation, andthe
fast time variations may not allow channel parameter tracking
when adaptation cannot be fast enough. In this regard, the use
of other kinds of nonlinear equalizers capable of coping with
strong noise bursts as well as long and fast-varying impulse
responses is of interest. Among the nonlinear equalizers,fuzzy
systems(FS) have been widely applied in communication
channels presenting the aforementioned impairments [8].

Generally speaking, fuzzy systems are nonlinear systems
capable of inferring complex nonlinear relationships between
input and output variables. They do not make any assumptions
regarding the structure of the process, nor do they invoke any
kind of probabilistic distribution model, i.e., they belong to
the general family of model-free, data-driven, nonparametric
methods. The basic building blocks of a fuzzy system, illus-
trated in Fig. 1, are the fuzzifier, the fuzzy rule base, the
inference engine, and the defuzzifier. The fuzzy rule base is
a group of rules that are combined in the inference engine
to produce a fuzzy output. In essence, the inference engine
produces mappings from fuzzy sets to fuzzy sets whereas the
fuzzifier maps the inputs into fuzzy sets, which are subse-
quently used as inputs to the inference engine. Finally, the
defuzzifier is responsible for mapping the fuzzy sets yielded
by the inference engine into crisp numbers.

The exact mathematical structure of FSs depends mainly
on four choices namely, type of fuzzification, membership
functions, inference mechanism, and defuzzification strategy.
Assuming singleton fuzzification and a proper choice of the
other parameters, it is possible to show [8] that the singleton
fuzzy system, operating as a transverse or feedback symbol-
decision equalizer, results in the normalized Bayesian solution
that achieves a probability of misclassification very closeto
the one attained with Bayesian equalizer derived from the
maximum likelihood(ML) criterion. Then, we can affirm
that (4) can be surprisingly seen as a fuzzy system if some
restrictions are taken into account. In fact, if one assumes



singleton fuzzification, Gaussian membership functions, max-
product composition, product implication, and height defuzzi-
fication, then the output of the normalized singleton type-1
fuzzy equalizer is given by [9]

fs(y(n)) = 1

P

y
k
∈Yd

Lw−1
P

i=0

exp

0

@

−(y(n−i)−yk (i))2

2σ2
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d
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i
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(5)

wherey(n− i) is PL channel output samples,σ2
F k

i

andyk(i)

are the variance and the mean of theith Gaussian membership
function of thekth rule of the fuzzy system. Now, assuming
that σF k

i
= σ2

v and yk = [yk(0) yk(1) · · · yk(Lw − 1)]T =
ỹk, where ỹk is the PL channel vector state defined in
Section II. These assumptions mean that the variances of all
membership functions are the same and equal to the noise
variance at the PL channel output and the centers of these
membership functions in thekth rule are equal to the elements
of the kth output PL channel vector state,k = 1, · · · , ns,
which was defined in Section II. As a result, we can conclude
that (5) and (4) are equal under the aforementioned constraints.
In other words, NOBE can be seen as a particular case of a
fuzzy equalizer. Also, we can note that this singleton fuzzy
equalizer is equal to normalized version of the the equalizer
used in [4].

If we now assume nonsingleton fuzzification, Gaussian
membership functions, max-product composition, product im-
plication, height defuzzification, Gaussian membership func-
tions modeling the uncertainty of the input data and fuzzy
rules and⋆, a t-norm named product of a nonsingleton type-1
FS [10], then the output of thisnormalized nonsigleton fuzzy
equalizer(NONFE) is given by [6]

fns(y(n)) = 1

P

ỹ
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wherey(n− i) is PL channel output samples,σ2
F k

i

andyk(i)

are the variance and the mean of theith Gaussian membership
function of thekth rule of the fuzzy system.σy is the standard
deviation of the membership function that is used to model the
uncertainty at the input data.

If one compares (5) and (6), it possible to see that the only
difference between both of them is the introduction of the term
σ2

y . In this case, ifσy = 0, then fns(y(n)) = fs(y(n)). As
a result, the NONFE can be reduced to the NOBE. Now, the
big question is: Why should we replace NOBE by NONFE?

The main advantage offered by NONFE is that nonsingleton
fuzzy system are capable of dealing with uncertainties in
the input data. From the telecommunication point of view,
it sounds quite difficult to understand because the used con-
straints to obtain NOBE from the NONFE.

However, when the singleton fuzzy system is derived we
do not take into account the uncertainties on the input data
into the fuzzy system formulation because singleton fuzzy
system is unable to do it. Although, some authors have derived
some relations between singleton fuzzy systems and Bayesian
equalizers, we can state that those relations are not based on
a fuzzy perspective. As a result, few people have noted the
strength that nonsingleton fuzzy system can offer for digital
communication. Overall, we can say that the nonsingleton
fuzzy systems are the only fuzzy system capable of dealing
with uncertainties in the input data and, as a result, can
improve the equalization performance. Two advantages offered
by nonsingleton fuzzy equalizers are: i) faster convergence rate
than those obtained with singleton fuzzy equalizers because
nonsingleton fuzzy equalizer can handle uncertainties in the
input data and ii) lowermean square errorMSE at the
equalizer output than the MSE value attained with singleton
fuzzy equalizers if the input data is corrupted by nonGaussian
noise because nonsingleton fuzzy equalizers can model the
input uncertainties.

As it was well-posed in [10], nonsingleton fuzzy systems
are especially useful in cases where the available trainingdata,
or the input data to the fuzzy logic system, are corrupted by
noise. Conceptually, the nonsingleton fuzzifier implies that the
given input value is the most likely value to be the correct one
from all the values in its immediate neighborhood; however,
because the input is corrupted by noise, neighboring points
are also likely to be the correct values, but to a lesser degree.

A type-1 fuzzy system-based decision feedback equalizer
can be easily derived. Essentially, the idea is to employ a
feedback filter of orderLb = Lh + Lw − 2 − d, so that the
feedback vector hasnb = 2Lb states. Thus, the channel states,
Yd, can be partitioned intonb subsets. The new positive and
negative channel states are given by

Y++
d = {y(n)|x(n − d) = +1 ∩ x̂(n − d) = +1} (7)

and

Y−−
d = {y(n)|x(n − d) = −1 ∩ x̂(n − d) = −1} (8)

The related number of states inY++
d andY−−

d becomes

nns =
ns

nb

= 2d+1. (9)

It is obvious that the feedback vector reduces the number of
channel states required for decision purposes, as originally
proved for a Bayesian equalizer implemented by using a RBF
network [7].

Adaptive version of these equalizers are also easily derived
with backpropagation algorithm. However, we have noted that
improved convergence rate is attained with a variable step-size
method. In this regard, thedelta-bar-delta(DBD) method [11]



is a good candidate for updating the step-size associated with
each equalizer’s parameters. DBD provides high convergence
rates as it tries to find the proper learning rate to compensate
for small magnitude of the gradient in the flat regions and to
dampen the large free parameter changes in deep regions. The
DBD consists of a parameter vector-updating rule performed
by a modified backpropagation procedure and a learning rate
rule defined by

∆w(n + 1) = −(1 − α) diag{µ0(n)....µP−1(n)}
∇J(w(n)) + α∆w(n)

(10)

and

µi(n + 1) =






κ, if λ̄i(n − 1)λi(n) > 0,

−φµi(n), if λ̄i(n − 1)λi(n) < 0

0, otherwise,

, (11)

respectively, where i = 0, . . . P − 1,
w(n) = [ w0(n) · · · wP−1(n) ]T denotes the vector
constituted by all parameters of a fuzzy equalizer,
µ(n) = [ µ0(n) · · · µP−1 (n)]T is the learning rate
vector;∆w(n + 1) = w(n + 1)−w(n); α is the momentum
rate, λi(n) = ∂J(w(n))/∂wi(n) is the partial derivative
of a considered cost function with respect towi(n) at the
nth iteration, λ̄i(n) = (1 − δ)λi(n) + δλ̄i(n − 1) is an
exponential average of the current and past derivatives.
J(w(n)) = 1

2 [x(n + d) − x̂(n)]2, wherex(n + d) and x̂(n)
are the transmitted symbol delayed byd samples and the
estimated symbol at the receiver side, respectively.

In Section IV, a turbo-fuzzy technique making use of
decision-feedback nonsingleton fuzzy system, whose parame-
ters are updated by DBD rule is discussed.

IV. T URBO-FUZZY EQUALIZER

In the turbo approach, it is assumed that the information is
encoded by an error-control code before transmission. The ISI
channel is modeled by a discrete-time linear filter as in (1),
which can be regarded as a rate R = 1, non-systematic, possibly
time-varying, convolutional code with complex valued coded
symbols. From this point of view, the channel encoder and the
channel form a serially concatenated scheme, which can be
decoded by an iterative (“turbo”) algorithm. So, the equalizer
and the channel decoder act as the inner and the outer decoder
respectively. This is shown in Fig. 3, wherey(n) represents
the signal at the output of the channel corrupted by a zero
mean additive white Gaussian noisev(n) with varianceσ2

v .
As in turbo coding, the receiver components aresoft-input

soft-output (SISO) devices that exchange soft information
iteratively between them. They are classically implemented
using conventionala posteriori probability(APP) algorithms,
based on the optimal BCJR-MAP decoder [12]. The SISO
equalizer must accept not only channel values but alsoa
priori information about the symbols to be detected. This
a priori information is provided by the channel decoder at
the previous iteration. The outputs of these SISO components

are usually expressed in terms oflog likelihood ratios(LLR),
whose definition for binary symbols is:

L (xk) = ln
P (xk = +1|y)

P (xk = −1|y)
(12)

The sign of the LLR gives the estimated symbols while their
amplitudes indicate the reliability of these decisions.

The interleaver plays a key role in an iterative scheme since
it permutes the symbols in a given data block, allowing tempo-
ral error sequence distribution to be modified [13]. Moreover,
it decorrelates the inputs of both decoder and equalizer and,
consequently, enables thea priori information to be considered
as independent information for the equalization process.

A turbo equalizer operates as follows. In the first iteration,
there is noa priori knowledge about the coded bits, so the
equalizer computes the a posteriori probabilities given only
the received symbols. From thesea posteriorivalues,extrinsic
information (LE

e (xn)) for each bit is calculated by subtracting
thea priori information from the corresponding equalizer out-
put. Theextrinsic information is the incremental information
about the current bit obtained through the detection/decoding
from all the other bits in a data block. The soft output from
the equalizer is then de-interleaved and passed to the channel
decoder that further generates new LLR’s. Finally, a new set
of extrinsic information (LD

e (xk)) is computed, interleaved
and fed back to the equalizer, which treats it as ana priori
information for the next iteration. The steps above are repeated
until a chosen termination criterion, like a maximum number
of iterations, is reached.

It is well known that the most suitable equalizers for turbo
equalization are implemented by the MAP algorithm. Unfortu-
nately, these algorithms have a computational complexity that
grows exponentially with the length of the channel impulse
response. In the case of PL channels, these equalizers become
unfeasible because PL channels are very long. Hence, simpler
linear or nonlinear suboptimal structures, like those proposed
in [4], [13]–[15] are devised to deal with this problem.

Additionally, PL channels suffer from high power impulsive
noises, which deteriorates the performance of linear equalizers.
On the other hand, nonlinear devices, like the fuzzy filters
described in section III, are well-suited for these channels.
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Fig. 2. Transmitter and receiver in a turbo equalizer.
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Fig. 3. Turbo-Fuzzy Equalizer.

Hence, in order to provide a low complexity solution with-
out performance degradation, this paper proposes the introduc-
tion of a decision feedback nonsingleton type 1 fuzzy equal-
izer, discussed in Section III, into a turbo equalization scheme.
The structure of the nonsingleton turbo-fuzzy equalizer is
depicted in Fig. 3. One can note thata priori information
is incorporated into the structure of the fuzzy equalizer as
feedback inputs. As in a traditional turbo equalizer, during
the first iteration there is noa priori knowledge about the
received symbols. As a result, the feedback inputs in Fig. 3
are zero. However, to accelerate the convergence and reduce
the computational load, a classical decision feedback structure
is employed, so that the soft outputs from the equalizer are
fed back to its inputs. In the ensuing iterations, the feedback
information is provided by the decoder. In the other words,
subsequent iterations offers to the fuzzy equalizera priori
information about the received symbols in accordance to the
turbo principle. As a result, good performance can be attained
as will be discussed in Section V.

Turbo-fuzzy equalizers require another change from tradi-
tional turbo systems. Indeed, in traditional turbo systemsthe
soft information provided by the decoder is in the form of
LLR of the interleaved coded bits, while the fuzzy equalizer
expects estimated values of the transmitted symbols. There-
fore, a mapping of the soft information in this feedback loop
is required [13], [14]. This is possible by computing the
expectation of each transmitted symbol. Using (12) and the
fact that P (xn = +1|y) + P (xn = −1|y) = 1 for BPSK
modulation, we have:

x̄n =
∑

x∈B

xP (xk = x|y) = tanh

(
La(xn)

2

)
(13)

whereB = {+1,−1} is the modulation alphabet andLa(xn)
is thea priori information provided by the decoder. Although
the soft outputs from the equalizer are not in LLR form, they
contain the same information as the LLR, as there is a one-
to-one mapping between both values.

V. PERFORMANCEEVALUATION

To evaluate the performance of the proposed turbo-fuzzy
equalizers in PL channels, blocks of information bits were
encoded by a rateR = 1/2 recursive sistematic convolutional
(RSC) code, with generator polynomials equal to 23 and 35,
expressed in octal. The coded bits were BPSK modulated
and permuted by a random interleaving of sizeL = 10000.
The BCJR-MAP algorithm was used to implement the de-
coder. In all simulations, 10 turbo iterations per received
data block were performed. We also used fuzzy equalizers
with 10 forward and 10 feedback inputs and each input had
20 Gaussian membership functions. We considered that the
noise was composed by white gaussian background noise and
impulsive noise, modeled as in [16].

We considered data transmission through the channel whose
frequency response is shown in Fig. 4. Thebit error rate
(BER) curves, computed as a function of thesignal to noise
ratio of the background noise, for four different turbo-fuzzy
equalizers are shown in Fig. 5. In this figure, we can see that,
after the last iteration, the nonsingleton turbo-fuzzy equalizer
with variable step-size had the best performance, followed
by the singleton equalizer with variable step-size and by the
nonsingleton equalizer with fixed step-size. Also, we notice
that the performance of these three equalizers are much better
than that of a singlenton equalizer with fixed step-size that
is equal to the normalized version of the turbo equalization
technique proposed in [4].

For a BER of 10−3, the nonsingleton DBD equalizer is
approximately 2.5 dB better than the equalizers with fixed
step-size and for a BER of10−4, the nonsingleton DBD
equalizer is approximately 6 dB better than the singleton
equalizer with fixed step-size, 2.5 dB better than the nons-
ingleton equalizer with fixed step-size and 1 dB better than
the singleton DBD equalizer. Hence, we can conclude that the
variation of the step-size can greatly improve the performance
of fuzzy equalizers.

We plot in Fig. 6 the BER curves at the output of the
decoder. We can observe that, except for the singleton equal-
izer with fixed step-size, the turbo-equalizers could recover
the transmitted information without any error forEb/N0

greater than 10 dB. This clearly shows the advantage of using
nonsingleton equalizers and variable step-size over singleton
fixed step-size fuzzy equalizers.

VI. CONCLUSIONS

In this paper, we propose turbo-fuzzy equalizers to mitigate
the detrimental effects of PL channels. We develop singleton
and nonsingleton fuzzy equalizers with fixed and variable
step-sizes and compare them to evaluate their performance
when all of them are applied to PLC single-carrier systems.
The comparison results reveal that the proposed nonsingleton
turbo-fuzzy equalizer with variable step-size provides a con-
siderable improvement compared with the other techniques.
In fact, as stated before, nonsingleton fuzzy system is an
appropriate technique to deal with problems in which the data
are corrupted by noise. Another interesting contribution refers
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to the fact that the use of variable step-size technique yield a
fast convergence rate.

REFERENCES

[1] M. V. Ribeiro, Telecommunications: Advances and Trends in Transmis-
sion, Networking and Applications, chapter Power Line Communica-
tions: A Promising Communication System’s Paradigm for Last Miles
and Last Meters Applications, pp. 133–156, Fundação Edson Queiroz,
2006.

[2] H. Day and H. V. Poor, “Advanced signal processing for power line
communications,”IEEE Communications Magazine, pp. 100–107, May
2003.
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