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Introduction

Processing and imaging of seismic reflection data rely, to a great extentacking procedures for
several purposes. Stacking is general performed along usendddigiveltime curves within 2D data
sections or surfaces within 3D data volumes. Referred tocasouts, such traveltime depend on one or
more parameters, that are estimated by coherence analysis applied dirdetlyltda, so as to produce
the maximum stacking energy. The most fundamental of a stacking preceduelocity analysis,
namely to obtain the stacking velocity and zero-offset (ZO) traveltime fagadins within a common-
midpoint (CMP) gather (see, e.g., Taner and Koehler, 1969). Theathrmdherence function is a
second-order energy measure, called semblance (Neidell and Tafé), Semblance is computed for
windows of N; samples taken from traces Idt receivers. Each window follows along the moveout
defined by the parameters being estimated, and consists of a few samplesdref after the window
center. The samples that pertain to the window may need to be interpolated.

Still within the framework of velocity analysis, Biondi and Kostov (1989) &iidin (1992) showed that
eigen-structure methods for coherence analysis can lead to parantietatiess (in this case velocity
spectra) with higher resolution than semblance. One of most commonly udedelsigjution methods
is MUItiple Signal Classification (MUSIC), introduced by Schmidt (1986jick is based in some
properties of the eigen-decomposition of the seismic data. Recently, MUSI8den used in Asgedom
et al. (2011) for estimating the common-reflection-surface (CRS) attributes

The implementation of MUSIC-based velocity spectra is the main focus of thik, i@r which we
propose a number of improvements, namely (a) To reduce its computationplesgty, we compute
the MUSIC coherence measure based on a single eigenvector, namehetheswmciated to the largest
eigenvalue. Following common practise, that referred to asaigest eigenvector. As a consequence,
the full eigenvalue decomposition is not required. Moreover, the lasjgstvector can be efficiently
computed by means of the power method (Golub, 1996); (b) To obtain fFheputational savings, we
propose a coherence function based on the eigen-decomposition oftawlaise dimension is lower
than the one currently used in the literature and (c) As a byproduct, thef tisis lower-dimensional
matrix seems to improve the performance of the method when dealing with cadrelatefronts, as
indicated by numerical experiments.

Covariance Matrices

As discussed in the introduction, coherence is computed on a window afefgtzred at some ting(i),
wherek corresponds to a given value of the parameter being testeddesignates a given receiver or
seismic trace. Here, we assume that the data is sorted in common-midpoint 2ke)s with the
traveltimety(i) being the normal moveout (NMO),

(i) =15+— (1)
Yk
in which vy is the NMO velocity being tested; is the half-offset andyg is the ZO traveltime, supposed
fixed. For eachrp, the windowed data can be written as a mabd), with dimensionN; x N;, where
6 = 1/w. When a window with correct values @ andv is applied, the windowed data matrix will
be represented as in Figure 1. In this case, the data will have the form

D(6) = 15" +N, 2)

wheresis aN; x 1 vector that contains the samples from the reflected wavklstaN; x 1 vector of
ones,N is anN; x N; noise matrix, which may also contain interfering reflections. The supetstrip
refers to transpose conjugate.

The Spatial Covariance Matrix: Hyperbolic windowing can also be used for eigenstructure-based
coherence calculation. Indeed, for eaghdifferent values oB result in different windows, and thus
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Figure 1 Seismogram before windowing operation (a) and data matrix, D(6k), after windowing (b).

in different data matrices. For eaéh, the covariance matrix to be estimated has the form

A 1 s/|?
R(6B) = ~D(BD"(8) ~ 13127 1 o2, ©
N N
where the dimension dR(6) is N x Ny, 62 is the noise variance arldis the identity matrix of ap-
propriate dimension. Note that we disregard the cross terms resultingZité@bD" (6y), because we
assume that the noise is zero-mean and uncorrelated with the sigkggduming that the window con-
tains a single reflection, the largest eigenvectoR08) will form the so-called signal subspace (see,
e.g., Kirlin, 1992). In this case, it can be shown that MUSIC coheremoetion can be computed as
Ny
P =— - 4
wherev(6) is the largest eigenvector 8%(6,). The quantityPs(6) can be interpreted as a measure of
whetherl is the largest eigenvector &(6). If this is the case, theRs(6«) will be large. The benefit
of using the signal subspace defined above is that it requires a singlevaige and, moreover, leads
to a one-dimensional signal subspace, which greatly simplifies the computétRe(y). At the n-th
iteration of this method, the estimated eigenvector is

> -1
yo— R
|IR(Bv-1)|
The stop criterion ig|v(™ —v("~Y|| < &, whereé is a threshold that controls the precision of the algo-

rithm. To reduce the number of iterations, we initialize the power method with thervé® = 1, as
we expect that this should be the largest eigenvector.

()

The Temporal Covariance Matrix: To obtain further computational savings, we propose a coherence
function based on the eigen-decomposition of the temporal covariance neatiirated as

1

F(6k) = EDH(Gk)D(Bk)- (6)

As the number of samples in the windadw, is generally smaller than the number of receivisksthe di-
mension of () will be smaller than that dR(6), leading reduced eigen-decomposition costs. Now, if
v(6) is the largest eigenvector Bf( 6 ), it can be shown thatl /N, )DM (6 )v(6) is the largest eigenvec-
tor of f (6). Thus, the MUSIC coherence function fmeudospectrum) now tests is = (1/N;)DH (6)1

is the largest eigenvector of matiik6). Namely,

§s
" S F U@ )

whereu(6y) is the largest eigenvector 6f6;). Note thatu(6k) can also be estimated by the power
method, now initialized withu® =&,

Pr(6)
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Figure 2 CMP section used in simulations.

Numerical Examples

We compare, for simple examples, the use of spatial and temporal cowaratdces to obtain high-
resolution NMO velocities. We show MUSIC results computed with spatial anddsahpoherency
measures, comparing them the ones obtained by semblance as a benchmtheksimulations, we
use the synthetic model of two reflections, with traveltimes generated by the é@tion. The first
reflection has ZO traveltime of 1s and NMO-velocity of 400Gsnthe second one has ZO traveltime
of 1.06s and NMO-velocity of 4500ts. Both reflections are modeled by a zero-phase Ricker wavelet,
with a dominant frequency of 25Hz and are fully correlated. The CMRB®®dllustrated in Figure 2,
contains 64 receivers. The offset of the first one is 80 m and the destaatween them is also 80m. The
sample period is 2ms. White Gaussian noise was added to get a signal toatioi$€XR) of 15dB.

Figures 3(a), 3(b) and 3(c) show velocity spectra calculated with segdland the PM-MUSIC pseu-
dospectra from equations (4) and (7), respectively. The windowszel 9 samples and velocities were
tested from 3000 ifs to 6000 nis, with increments of 10 8. For the spatial covariance matrix, we per-
formed spatial smoothing (Shan et al., 1985), together with forwardvizrck(FB) averaging (Willians
et al., 1988), using 47 subarrays, of 18 receivers each. Thisetearly show that both MUSIC algo-
rithms outperform semblance in terms of resolution, resulting in more prediseityeestimates. We
also see that MUSIC with temporal correlation presents even better resdhgio spatial correlation.

Figures 3(d) and 3(e) show velocity spectra calculated with PM-MUSiGgdatial and temporal covari-
ance matrices, respectively. Clearly, the use of the power method has actiomthe results. However,
when comparing Figure 3(d) with Figure 3(b), and Figure 3(e) with Fig(c§ it can be observed that
PM-MUSIC is slightly more accurate when applied to the temporal covariant&xma

Conclusions

High-resolution eigen-structure algorithms, denoted PM-MUSIC have lpeeposed for coherence
analysis as alternative to conventional semblance. PM-MUSIC wasnpeelsm two variants, spatial
and temporal. Initial simulations with simple synthetic model, indicated that PM-MWat@erforms
semblance and that the temporal variant of PM-MUSIC is superior to its bpatiaterpart. Moreover,
temporal PM-MUSIC is particularly useful when dealing with correlated algnas we do not need

to use spatial smoothing together with forward-backward averaging to thaksignals uncorrelated.
The complexity order for semblance and PM-MUSIC from equations (d)(@nhvelocity spectra are,
respectivelyO(N;), O(N?) andO(N;). We have observed, in synthetic data simulations, that the com-
plexity reduction in PM-MUSIC from the temporal covariance matrix, dogsfiect its precision, when
compared to PM-MUSIC from the spatial covariance one.
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Figure 3 Velocity spectra from semblance (a), MUSIC from spatial (b) and temporal (c) covariance
matrices and PM-MUS C from spatial (d) and temporal (€) covariance matrices.
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