
Introduction

Processing and imaging of seismic reflection data rely, to a great extent, on stacking procedures for
several purposes. Stacking is general performed along user-designed traveltime curves within 2D data
sections or surfaces within 3D data volumes. Referred to asmoveouts, such traveltime depend on one or
more parameters, that are estimated by coherence analysis applied directly tothe data, so as to produce
the maximum stacking energy. The most fundamental of a stacking procedure is velocity analysis,
namely to obtain the stacking velocity and zero-offset (ZO) traveltime for reflections within a common-
midpoint (CMP) gather (see, e.g., Taner and Koehler, 1969). The standard coherence function is a
second-order energy measure, called semblance (Neidell and Taner,1971). Semblance is computed for
windows of Nt samples taken from traces atNr receivers. Each window follows along the moveout
defined by the parameters being estimated, and consists of a few samples before and after the window
center. The samples that pertain to the window may need to be interpolated.

Still within the framework of velocity analysis, Biondi and Kostov (1989) andKirlin (1992) showed that
eigen-structure methods for coherence analysis can lead to parameter estimations (in this case velocity
spectra) with higher resolution than semblance. One of most commonly used high-resolution methods
is MUltiple SIgnal Classification (MUSIC), introduced by Schmidt (1986), which is based in some
properties of the eigen-decomposition of the seismic data. Recently, MUSIC has been used in Asgedom
et al. (2011) for estimating the common-reflection-surface (CRS) attributes.

The implementation of MUSIC-based velocity spectra is the main focus of this work, for which we
propose a number of improvements, namely (a) To reduce its computational complexity, we compute
the MUSIC coherence measure based on a single eigenvector, namely the one associated to the largest
eigenvalue. Following common practise, that referred to as thelargest eigenvector. As a consequence,
the full eigenvalue decomposition is not required. Moreover, the largesteigenvector can be efficiently
computed by means of the power method (Golub, 1996); (b) To obtain further computational savings, we
propose a coherence function based on the eigen-decomposition of a matrix whose dimension is lower
than the one currently used in the literature and (c) As a byproduct, the useof this lower-dimensional
matrix seems to improve the performance of the method when dealing with correlated wavefronts, as
indicated by numerical experiments.

Covariance Matrices

As discussed in the introduction, coherence is computed on a window of datacentered at some timeτk(i),
wherek corresponds to a given value of the parameter being tested andi designates a given receiver or
seismic trace. Here, we assume that the data is sorted in common-midpoint (CMP)gathers with the
traveltimeτk(i) being the normal moveout (NMO),
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2 = τ2
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in which vk is the NMO velocity being tested,hi is the half-offset andτ0 is the ZO traveltime, supposed
fixed. For eachτ0, the windowed data can be written as a matrixD(θk), with dimensionNr ×Nt , where
θk = 1/vk. When a window with correct values ofτ0 andvk is applied, the windowed data matrix will
be represented as in Figure 1. In this case, the data will have the form

D(θk) = 1sH +N, (2)

wheres is aNr ×1 vector that contains the samples from the reflected wavelet,1 is aNr ×1 vector of
ones,N is anNr ×Nt noise matrix, which may also contain interfering reflections. The superscript H
refers to transpose conjugate.

The Spatial Covariance Matrix: Hyperbolic windowing can also be used for eigenstructure-based
coherence calculation. Indeed, for eachτ0, different values ofθk result in different windows, and thus
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Figure 1 Seismogram before windowing operation (a) and data matrix, D(θk), after windowing (b).

in different data matrices. For eachθk, the covariance matrix to be estimated has the form

R̂(θk) =
1
Nt

D(θk)DH(θk)≈
‖s‖2

Nt
11H +σ2I, (3)

where the dimension of̂R(θk) is Nr ×Nr, σ2 is the noise variance andI is the identity matrix of ap-
propriate dimension. Note that we disregard the cross terms resulting fromD(θk)DH(θk), because we
assume that the noise is zero-mean and uncorrelated with the signals. Assuming that the window con-
tains a single reflection, the largest eigenvector ofR̂(θk) will form the so-called signal subspace (see,
e.g., Kirlin, 1992). In this case, it can be shown that MUSIC coherence function can be computed as

PS(θk) =
Nr

Nr −|1Hv(θk)|2
, (4)

wherev(θk) is the largest eigenvector ofR̂(θk). The quantityPS(θk) can be interpreted as a measure of
whether1 is the largest eigenvector ofR̂(θk). If this is the case, thenPS(θk) will be large. The benefit
of using the signal subspace defined above is that it requires a single eigenvalue and, moreover, leads
to a one-dimensional signal subspace, which greatly simplifies the computationof PS(θk). At the n-th
iteration of this method, the estimated eigenvector is

v(n) =
R̂(θk)v(n−1)

||R̂(θk)v(n−1)||
. (5)

The stop criterion is||v(n)−v(n−1)||< ξ , whereξ is a threshold that controls the precision of the algo-
rithm. To reduce the number of iterations, we initialize the power method with the vector v(0) = 1, as
we expect that this should be the largest eigenvector.

The Temporal Covariance Matrix: To obtain further computational savings, we propose a coherence
function based on the eigen-decomposition of the temporal covariance matrix, estimated as

r̂(θk) =
1
Nr

DH(θk)D(θk). (6)

As the number of samples in the window,Nt , is generally smaller than the number of receivers,Nr, the di-
mension of̂r(θk) will be smaller than that of̂R(θk), leading reduced eigen-decomposition costs. Now, if
v(θk) is the largest eigenvector ofR̂(θk), it can be shown that(1/Nr)DH(θk)v(θk) is the largest eigenvec-
tor of r̂(θk). Thus, the MUSIC coherence function (orpseudospectrum) now tests if̂s = (1/Nr)DH(θk)1
is the largest eigenvector of matrixr̂(θk). Namely,

PT (θk) =
ŝH ŝ

ŝH ŝ−|ŝHu(θk)|2
, (7)

whereu(θk) is the largest eigenvector ofr̂(θk). Note thatu(θk) can also be estimated by the power
method, now initialized withu(0) = ŝ.
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Figure 2 CMP section used in simulations.

Numerical Examples

We compare, for simple examples, the use of spatial and temporal covariance matrices to obtain high-
resolution NMO velocities. We show MUSIC results computed with spatial and temporal coherency
measures, comparing them the ones obtained by semblance as a benchmark.In the simulations, we
use the synthetic model of two reflections, with traveltimes generated by the NMOequation. The first
reflection has ZO traveltime of 1s and NMO-velocity of 4000m/s; the second one has ZO traveltime
of 1.06s and NMO-velocity of 4500m/s. Both reflections are modeled by a zero-phase Ricker wavelet,
with a dominant frequency of 25Hz and are fully correlated. The CMP section, illustrated in Figure 2,
contains 64 receivers. The offset of the first one is 80m and the distance between them is also 80m. The
sample period is 2ms. White Gaussian noise was added to get a signal to noise ratio (SNR) of 15dB.

Figures 3(a), 3(b) and 3(c) show velocity spectra calculated with semblance, and the PM-MUSIC pseu-
dospectra from equations (4) and (7), respectively. The window sizewas 19 samples and velocities were
tested from 3000m/s to 6000m/s, with increments of 10m/s. For the spatial covariance matrix, we per-
formed spatial smoothing (Shan et al., 1985), together with forward-backward (FB) averaging (Willians
et al., 1988), using 47 subarrays, of 18 receivers each. The results clearly show that both MUSIC algo-
rithms outperform semblance in terms of resolution, resulting in more precise velocity estimates. We
also see that MUSIC with temporal correlation presents even better resolution than spatial correlation.

Figures 3(d) and 3(e) show velocity spectra calculated with PM-MUSIC for spatial and temporal covari-
ance matrices, respectively. Clearly, the use of the power method has no impact on the results. However,
when comparing Figure 3(d) with Figure 3(b), and Figure 3(e) with Figure3(c), it can be observed that
PM-MUSIC is slightly more accurate when applied to the temporal covariance matrix.

Conclusions

High-resolution eigen-structure algorithms, denoted PM-MUSIC have been proposed for coherence
analysis as alternative to conventional semblance. PM-MUSIC was presented in two variants, spatial
and temporal. Initial simulations with simple synthetic model, indicated that PM-MUSICoutperforms
semblance and that the temporal variant of PM-MUSIC is superior to its spatial counterpart. Moreover,
temporal PM-MUSIC is particularly useful when dealing with correlated signals, as we do not need
to use spatial smoothing together with forward-backward averaging to makethe signals uncorrelated.
The complexity order for semblance and PM-MUSIC from equations (4) and (7) velocity spectra are,
respectively,O(Nr), O(N2

r ) andO(Nr). We have observed, in synthetic data simulations, that the com-
plexity reduction in PM-MUSIC from the temporal covariance matrix, does not affect its precision, when
compared to PM-MUSIC from the spatial covariance one.
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Figure 3 Velocity spectra from semblance (a), MUSIC from spatial (b) and temporal (c) covariance
matrices and PM-MUSIC from spatial (d) and temporal (e) covariance matrices.
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