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Abstract — Despite the widespread use of forward-error
control (FEC) coding, most channel estimation techniques ignore
its presence, and instead make the simplifying assumption that
the transmitted symbols are uncoded. However, FEC induces
structure in the transmitted sequence that can be exploited to
improve channel estimates. Furthermore, soft-output decoding
can improve decision-driven techniques. In this work we propose
a technique for exploiting FEC in channel estimation that
combines iterative channel estimation with turbo equalization.
We present one example showing that an estimator that exploits
FEC can attain the same accuracy as one that ignores FEC, but
with an SNR that is 6 dB lower.

I. I NTRODUCTION

Practical communications systems use forward-error
control (FEC) coding, which restricts the possible transmitted
sequences so as to increase their minimum distance, thus
reducing the signal-to-noise ratio (SNR) required to attain a
given bit-error rate. Nevertheless, the presence of FEC codes
is seldom exploited in decision-directed and blind estimation
techniques. Rather, most estimators assume the channel inputs
are independent, identically distributed (i.i.d.) over a finite
alphabet. In fact, at sufficiently high SNR, even decision-
directed blind iterative estimation techniques that ignore FEC
can perform well [1,2]. There is then little incentive to incur
the extra complexity required to exploit FEC. However, the
last decade has seen the discovery of powerful FEC
techniques that, with reasonable complexity, allow reliable
transmission at an SNR only fractions of a dB from channel
capacity [3-5]. When powerful codes are used at low SNR,
estimation techniques that ignore FEC are doomed to fail.

There is little prior work that relates FEC to channel
estimation. In [6] it was shown that FEC, though violating the
i.i.d. assumption, does not hurt the performance of some blind
equalizers that rely on this assumption. Yet, practical blind
estimators that benefit from FEC were unknown until the
estimators of [7-9] were proposed. These techniques combine
the good performance of blind iterative channel estimation
[1,2], shown in Fig. 1(a), and turbo equalization [10–12],
shown in Fig. 1(b). As illustrated in Fig. 1(a) and (b), both are
based on an iterative exchange of information between blocks.

In Fig. 1(a), the symbol estimator uses the channel
estimates to compute soft estimates of the transmitted
sequence. The channel estimator then uses these soft symbol
estimates to improve the channel estimates, which in turn
produce better symbol estimates, and so on. However, FEC is
ignored. Likewise, in the turbo equalizer of Fig. 1(b), soft
symbol information from the FEC decoder is used asa priori
information to improve the soft symbol estimates produced by
the equalizer. These estimates are then passed back to the
decoder, and so on. Here, channel knowledge is assumed. In
this work, the two techniques of Fig. 1(a) and (b) will be
combined into a single, practical method for exploiting FEC
in blind channel estimation.

The FEC-aware schemes of [7-9] are based on the channel
estimator of [1]. In contrast, we propose a blind iterative FEC-
aware channel estimator based on the channel estimator of [2],
which has lower complexity and improved convergence, being
less likely to become trapped in a undesirable stationary point
of the iterative scheme. Furthermore, the soft-output equalizer
in [7-9] is based on the BCJR algorithm [13], which has
complexity exponential in the channel memory. In contrast,
we propose a soft-output equalizer based on a modified
decision-feedback equalizer (DFE) [14] which has complexity
linear in the number of equalizer coefficients, making it
feasible to apply the proposed techniques to long channels
with severe ISI.

II. C HANNEL M ODEL AND PROBLEM STATEMENT

Consider the system model shown in Fig. 2, where a binary
messagem = [m0, …, mK–1] of lengthK is encoded by a rate
K ⁄ N encoder, producing a codewordc = [c0, …, cN–1] of

 Fig. 1. A blind iterative channel estimator (a) iterates between
channel estimation and equalization; a turbo equalizer (b)
iterates between equalization and decoding.
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length N, with each symbol drawn from the binary alphabet
{ ±1}. The codeword is then permuted according to an
interleaverπ, resulting in the transmitted sequencea = [a0, …,
aN�

� ], with ak = cπ(k). Let r = [r0, …, rL – 1] denote the
received sequence, whereL = N + µ, and where:

rk = hTak + nk , (1)

where the channel impulse response ish = [h0, …, hµ]T, ak =
[ak, …, ak–µ]T is a vector of channel inputs, andnk ~ N(0, σ2)
represents the white Gaussian noise.

Theblind estimation problem is to estimateh andσ2 from
r, without the assistance of training (i.e., without knowledge
of m). Instead, the estimator must rely solely on its knowledge
of the probability distribution function (pdf) ofm, assumed
here to be uniform, knowledge of the encoder and interleaver,
and knowledge of the channel model (1). Thejoint maximum-
likelihood estimator [15] would chooseh, σ2, andm so as to
jointly maximizep(r|m; h, σ2), the conditional pdf ofr given
h, σ2, andm. Its complexity is prohibitive, however, and thus
we seek lower complexity approximations.

III. BACKGROUND

Unlike the joint ML estimator, a conventional receiver deals
with the tasks of channel estimation, equalization and FEC
decoding separately. This approach is suboptimal, and
performance can be improved with iterative techniques such
as turbo equalizers and iterative channel estimators.

A key ingredient of iterative algorithms is the use of soft
symbol estimates, which, for a BPSK system, takes the form
of the log-likelihood ratio (LLR):

λk = log . (2)

The BCJR algorithm [13] computesλk exactly, while the
decision-aided equalizer [16] and the soft-output DFE [2]
provide reduced-complexity approximations. The LLR can be
used to compute two important quantities:

• Maximuma posteriori (MAP) decision: =sign(λk) ,

• A posteriori expectation: =E[ak|r] = tanh(λk ⁄ 2) .

The iterative channel estimators of [1,2] deal with a
simplified blind channel estimation problem in which FEC is
ignored, and instead the transmitted symbols are assumed to

be i.i.d. uniform. The problem is then to chooseh, σ2, anda
so as to jointly maximize the likelihoodp(r|a; h, σ2). Even
this simplified ML estimator is generally infeasible, since it
would require that all2N possible sequencesa be tested. An
alternative of reasonable complexity is the EM algorithm [1],
which generates a sequence of estimates with non-decreasing
likelihood and with proper initialization may converge to the
ML solution. The extended-window EM algorithm [2] is a
related lower complexity algorithm that is less prone to being
caught in a local maximum of the likelihood function.

Turbo equalizers [10-12] also deals with a simplified
problem by assuming channel knowledge. In this case, an
ideal receiver that jointly equalizes and decodes would find
the information sequencem that maximizesp(r|m). Solving
this problem exactly is computationally hard, since the
presence of the interleaver implies that the number of states in
the joint encoder ⁄ channel super-trellis can be large. Turbo
equalization provides a low-complexity iterative approximate
solution. Key to its success is the fact that only extrinsic
information is exchanged between the equalizer and the
decoder. The extrinsic information provided by the equalizer
can be seen as the information on the transmitted bits gained
at the equalizing stage by exploiting only the structure of the
channel. Similarly, the extrinsic information provided by the
decoder contains the information about the transmitted bits
that was not apparent to the FEC-ignorant equalizer. The
equalizer and decoder use this extrinsic information asa
priori information to compute new values forλk. The extrinsic
information, denoted by , is computed as the difference
between this new value ofλk and the extrinsic information
used in its computation.

IV. FEC-AWARE BLIND CHANNEL ESTIMATION

One important aspect of turbo equalizers is that they
provide soft estimates of the transmitted sequence that benefit
from the FEC code structure, and are much more reliable than
the estimates provided by an equalizer alone. Its seems natural
that using this information for channel estimation should
provide better results than using FEC-ignorant symbol
estimates, as is done in Fig. 1(a). Thus, we propose the
channel estimator of Fig. 3, in which the symbol estimator in
Fig. 1(a) is replaced by the turbo equalizer of Fig. 1(b).

The proposed estimator of Fig. 3 iterates between three
blocks: a channel estimator, a soft-output equalizer, and a soft-
output FEC decoder. A receiver would have to perform these
functions anyway, so their presence alone does not imply any
added complexity; the only added complexity is due to fact
that these functions are performed multiple times as the
algorithm iterates. Fig. 2. Transmitter and channel model.
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âk

ãk
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It is instructive to compare the proposed estimator with a
conventional receiver that performs channel estimation just
once, then uses these estimates in a turbo equalizer. The
proposed estimator can be derived from this receiver by
making just one modification: Rather than using the initial
channel estimates for every turbo iteration, the proposed
receiver occasionally improves the channel estimates based on
tentative soft decisions. Specifically, everyJ-th iteration of the
turbo equalizer, the soft-symbol estimates produced by the
FEC decoder are used by the extended window algorithm to
produce better channel estimates, which are then used for the
nextJ iterations. Key to the good performance is the fact that
the a priori information for the soft-output equalizer is not
initialized to zero afterJ iterations of the turbo equalizer, but
instead, extrinsic information from the last instance is used as
the initiala priori information in the next one. The choice ofJ
is a design parameter that can affect convergence speed,
steady-state behavior, and overall complexity. Because of the
low complexity of the channel estimator relative to the
complexity of the equalizer and FEC decoder, we have found
empirically thatJ = 1 is a reasonable choice. With this choice,
each time the FEC decoder passes extrinsic information to the
equalizer, the channel estimates are simultaneously improved.
This is only marginally more complex than a conventional
receiver that uses turbo equalization, but the performance
improvement that results can be significant.

V. SOFT DFE WITH A PRIORI INFORMATION

In [2] we showed how a DFE can be used to approximate a
soft-output BCJR equalizer, but with significantly lower
complexity. We now expand that idea to incorporatea priori
information, making it useful as an inner equalizer in a turbo
equalization system.

Let zk be the output of an MMSE-DFE withrk as its input,
Nf forward taps andNb backward taps. This relationship is
illustrated in Fig. 4. Roughly speaking, the equalizer
eliminates ISI from its output, so that we may writezk ≈ Aak +
vk, whereA is the amplitude of the equivalent memoryless
channel betweenak andzk, andvk is the equivalent noise with
variance . This noise includes residual ISI, but we may
approximate it as AWGN. We may thus approximate the
extrinsic LLR by ≈ 2Azk/ . This information is extrinsic
because it depends only on the structure of the channel. Any a
priori information from the FEC decoder should be added to

to produce the full LLRλk. Since the full LLR will
provide more reliable decisions than the extrinsic information
alone, should be used to compute symbol estimates in the
feedback loop of the DFE, as illustrated in Fig. 4.

Computation of the coefficient vectorsf andb is easy if the
channel is known [14, p. 542]. Obviously, the channel
information is not available, but in keeping with the iterative
paradigm of Fig. 3 we may computef andb using the current
estimates and . We also propose to use the soft
information =tanh(λk ⁄ 2), as opposed to the traditional
hard information coming from a slicer, in the feedback loop.
As in [2], we estimateA and using a scalar channel version
of EM.

VI. SIMULATION RESULTS

In this section we present simulation results that illustrate
the performance of the proposed estimation algorithm. For all
the experiments, the channel estimates were initialized by
measuring the energy of the received signal, and assigning
half to signal and half to noise, yielding = ⁄ (2L)
and  = [ , 0, …, 0].

We begin by showing how exploiting FEC can improve
channel estimates. Consider the system of Fig. 2, and assume
that K = 2048 bits are encoded by a rate1 ⁄ 2 recursive
systematic convolutional (RSC) code with parity generator
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polynomial(1 + D2) ⁄ (1 + D + D2). The resulting 4096 coded
bits are interleaved with a random interleaver and transmitted
through an ISI channel withh = [0.5, 0.7, 0.5]. We use the
DFE-based soft-output equalizer of the previous section, with
Nf = 15 forward andNb = 2 feedback coefficients. The results
in the next two paragraphs were averaged over 200 runs of this
experiment.

In Fig. 5 we plot the mean-square estimation error
MSE = E[|| � h ||2] as a function of the per-bit SNREb ⁄ N0
after five iterations, for both the proposed estimator that
exploits FEC as well as an iterative blind estimator [2] that
ignores FEC. Also shown are the same two curves when the
DFE is replaced by BCJR. We see that the DFE-based
estimator that exploits FEC can attain the same level of
accuracy as the one that ignores FEC, but with an SNR that is
6 dB lower. Furthermore, the DFE-based estimator that
exploits FEC requires only 2 dB more SNR than the a BCJR-
based estimator that exploits FEC, to achieve the same MSE.

It is also interesting to note that the bit-error rate (BER)
performance of the proposed blind schemes is comparable to
that of a receiver with full channel knowledge. This can be
seen in Fig. 6, where we plot the BERversus Eb/N0 for
several iterations of the DFE-based and BCJR-based turbo
equalizers with channel knowledge, as well as the channel
estimators based on these two algorithms. We see that as the
number of iterations increases, the gap between the blind and
the non-blind equalizers decreases, until it is almost closed.
The blind scheme is seen to converge in about the same
number of iterations as the scheme with channel knowledge.
Furthermore, we again see that the DFE-based system
requires only 2 dB more SNR than the BCJR-based one for a
BER of 10 �

�

. This plot also highlights the good use that the

proposed DFE makes ofa priori information, as evidenced by
the 5 dB gap between the first and last iteration of the DFE-
based system with channel knowledge.

To analyze the performance of the channel estimator across
different channels, we tested its performance over an
ensemble of 1000 randomly generated channels. In each case,
K = 400 message bits were encoded with a rate 1 ⁄ 4 serially
concatenated turbo code using two identical rate 1 ⁄ 2 RSC
encoders, each with parity generator(1 + D2) ⁄ (1 + D + D2).
The channels were generated randomly according toh =
u ⁄ ||u||, whereu ~ N(0, I) is a circularly symmetric Gaussian
random vector of length five, and the noise variance was
chosen so thatEb /N0 = 2 dB. The receiver used the BCJR
algorithm for both equalization and decoding. The turbo
decoder went through only one iteration (J = 1) for each
iteration of the overall scheme.

In Fig. 7, we plot the estimated probability density function
pe(e) for the estimation errore = || � h ||, produced after 60
iterations of the FEC-aware and the FEC-ignorant extended-
window channel estimators. We observe that the FEC-aware
estimator produced errors larger than –10 dB in only 2.7% of
the experiments, while the errors produced by the FEC-
ignorant estimator were larger than –10 dB in 82.9% of the
experiments. To test the quality of these estimates, we used
them to perform a turbo equalization for each trial. After 30
iterations of the turbo equalizer, we could recover the
transmitted codeword without errors for 90.7% of the
channels using the FEC-aware estimates, while this was
possible for only 12.3% of the channels using the FEC-
ignorant estimates. The benefit of using FEC information for
channel estimation are thus clear.

 Fig. 5. .Mean-square estimation error versus SNR.
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ĥ

1320



It is well known that blind channel estimators cannot
resolve delays. A blind equalizer that estimates≈ ak � 1 is
often just as good as one that estimates≈ ak. However, this
delay is problematic when the transmitter includes a random
interleaver. For example, if we deinterleaveak – 1 instead of
ak, the result will bear no resemblance whatsoever tock � 1.
The frame boundaries must be identified before FEC decoding
is meaningful. In the random channel experiment, we assumed
perfect frame synchronization. A truly blind frame
synchronizer would be difficult to implement in practice.
Fortunately, in practice there will exist side information from
preambles and pilot symbols that can be used to synchronize
the frame in a semiblind fashion.

VII. CONCLUSIONS

We proposed a blind iterative channel estimator that
benefits from the presence of forward-error correction coding.
The benefits can be significant. In one example, compared to
an estimator that ignores FEC, an estimator that exploits FEC
can attain the same performance with 6 dB less SNR. In our
simulations, the performance of the proposed blind schemes
was as good as that of a turbo equalizer with channel
knowledge, and it converged equally fast. We also proposed a
soft-output equalizer based on a DFE that incorporatesa
priori information. We showed that, even though a blind FEC-
aware scheme based on this equalizer performs slightly worse
than the scheme based on the BCJR algorithm, the
performance of the DFE-based system improves as the
iterations progress, providing a gain of5 dB over a non-
iterative system with channel knowledge that employs a
conventional DFE followed by a decoder.
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