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ABSTRACT 

The ultimate receiver in a communications system is one that minimizes the 
bit-error rate (BER) or, equivalently, that maximizes the likelihood function. 
Unfortunately, a maximum-likelihood (ML) receiver can he prohibitively 
complex in some cases. For instance, in a blind system, where neither the 
channel nor any part  of the transmitted sequence are known, an  ML receiver 
would have to  test all possible transmitted sequences to determine the one 
that minimizes the BER. In this paper, we derive a likelihood function for 
blind communications, and we use a genetic algorithm as the optimization 
strategy, a t  a reasonable computational cost. The performance of the result- 
ing algorithm can be improved by exploiting structural aspects of the trans- 
mitted sequence that a r e  normally neglected by blind techniques, such as the 
presence of some known symbols or  of an error-control code. Simulation 
results are  presented to validate the proposal. 

1. INTRODUCTION 

lntersymbol interference (1Sl) is one of the most common impairments introduced 
by communications systems, and it is normally compensated for by an equalizer. 
Given a block of received symbols, the best equalizer, in the sense that it mini- 
mizes the bit-emor rate (BER), is the maximum-likelihood (ML) equalizer, im- 
plemented via the Viterbi algorithm [I]. The Viterbi algorithm has two main dis- 
advantages. First, its complexity g o w s  exponentially with the length of the chan- 
nel impulse response and the size of the modulation, rendering it impractical for 
long channels or large constellations. Second, it requires the estimation of the 
communications channel impulse response. 

Channel estimation is traditionally based on the transmission of a training se- 
quence, also known to the receiver. However, the transmission of a training se- 
quence in some systems is undesirable or impossible. For instance, in wireless 
systems the training sequence increases the system overhead. thus decreasing the 
number of users that the system can accommodate and/or the rate available for 

0-7803-8608-6/04/$20.00 02004 IEEE 665 



each user. Furthermore, traditional trained systems are suboptimal, since only the 
received samples corresponding to the training symbols are used for estimation. 
The size of the training sequence can be reduced if all the received samples are 
used for estimation, leading to semi-blind systems 121. Interestingly, channel esti- 
mation is possible even when a training sequence is not available. In this case, 
estimation is based solely on the statistics of the transmitted symbols, resulting in 
blind systems [3]. These systems are the focus of this work. 

In a blind context, the ML detector also minimizes the BER. The blind likelihood 
function depends on the channel parameters and the transmitted sequence; there- 
fore, the blind ML detector jointly and optimally performs channel estimation and 
equalization. However, finding the blind ML solution is prohibitively complex, 
because, in abstracto, it would he necessary to compute and compare the likeli- 
hood of virtually every possible transmitted sequence to determine the ML se- 
quence. Even in simple problems, the resulting search space can have more than 
10'' elements. 

Problems such as blind ML detection, which exhibit an explosive increase in the 
computational burden, are well-suited to eficient and relatively parsimonious 
heuristic search techniques, such as genetic algorithms (CA) [4]. This assumption 
is encouraged by the work of Chen and Wu [5 ] ,  wherein this kind of optimization 
tool is used to solve the blind ML problem. The GA proposed in [5]  is based on 
explicit channel estimates and on the Viterbi algorithm. 

In this work, we propose an altemative receiver based on a simple formulation of 
the ML problem and on a specially tailored GA. We first derive in Section 2 a 
likelihood function that does not depend on the channel estimate. The computa- 
tion of this likelihood function is simple, and its complexity grows only linearly 
with the channel length and the length of the transmitted sequence. Based on this 
likelihood, we propose in Section 3 a CA that works directly on the transmitted 
sequence, obviating the need for the Viterbi algorithm and direct channel esti- 
mates. Section 4 is dedicated to applicability issues, including a deeper compari- 
son of the present proposal with the one presented in [5]. Simulation results are 
shown in Section 5 to illustrate the search capability of the proposed algorithm. 
Concluding remarks and future perspectives are briefly outlined in Section 6 .  

2. CHANNEL MODEL AND THE LIKELIHOOD FUNCTION 

In this work, we consider the transmission of a sequence of symbols a = [a, . , , a,,] 
through a channel whose impulse response is given by h = [ha . . . h$. For ease of 
presentation, we assume a binary alphabet, where ar E {-I, +I 1, although gencr- 
alization to higher-order constellations is straightforward. The received sequence 
i s r = [ r l   where 

( 1 )  
M 

rk = Cn,=ohmak-m + nk 1 

L = M +  N, n r  is an independent and identically distributed additivewhite- 
Gaussiannoisewithvarianceo',andweassumethata,=Oifke { I ,  ... N ) .  
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Now, consider the likelihood function p(rl i , h ), defined as the conditional prob- 
ability of r assuming that the sequence was transmitted through the channel h . 
In particular, consider the ML vectors ayL and ha that maximize this function: 
(ayL.hWL) = argmax p(rl I, h). These are the parameters that best "explain" the 
received sequence, in the sense that we are less likely to observe r if we assume 
any other set of parameters, i.e., p(rl i ,h) < p(rJayL,hyL) V i ,h , More impor- 
tantly, it can be shown that aML minimizes the BER [I].  Since the BER is the 
ultimate performance measure of a communication system, aML is the best possi- 
ble estimate of the transmitted sequence. 

Note that maximizing a positive function is equivalent to maximizing its loga- 
rithm. Recalling that the noise samples are independent and Gaussian, it can be 
shown [ I ]  that 

1og@(rl i , h )) = - l(r - i/(2 + C, (2) 

where C is a constant that does not depend on i and h,  and i =[PI 
where 

... P L ] ,  

"E" k - n , = ~  hnr'k-m " ' (3) 
^ ^  

In matrix notation, we may write i = hA,  where A is an ( M + l ) x L  matrix given 
by r ,  R a 2 .  . . R~ ... 

From (Z), it is clear that finding the ML solution is equivalent to finding the esti- 
mated received sequence i that is closest to the actual received sequence r. In 

other words, (ahxL,ha) = argmin (/r - f((' . Since we are only interested in estimat- 
ing the transmitted sequence, we may write 

( 5 )  
aML =argmini(mini((r-il( 2 ) ,  

The minimization problem within parenthesis should be solved for each given i , 
Considering the matrix form of i , we see that this minimization is a traditional 
least-squares problem [6] ,  leading to 

2 " r  - * I - , "  I 

(6 )  
a,,=argmin;(~~r~~ - rA (AA ) Ar ) 

" " r  .," =argmax;riT(AA ) Arr  
where the second equality follows from the elimination of the terms of the first 
equality that do not depend on i . Thus, ( 6 )  gives a simple function of the trans- 
mitted sequence whose maximization is equivalent to the ML problem. Comput- 
ing this function requires (M+I)N multiplications and (M+l)(N-I) additions, as 
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well as the inversion of an (M+l)x(M+l) matrix. Also, note that h does not ap- 
pear in (6) .  

The term being maximized in (6) is equal to the square of the n o m  of the projec- 
tion of r onto the space' spanned by the rows of A . This observation yields an 
interesting interpretation to the blind ML problem: find the mahix i such that 
the projection of r onto the range space of the rows of A has maximum norm. 
Interestingly, note that the spaces spanned by and - A  are the same. Thus, if 
i is an ML sequence, so is - i . This type of ambiguity is standard and acceptable 
in blind systems [3]. 

Finally, note that 1. - cIl2,/L is the estimated noise variance assuming that was 
transmitted. Thus, if am is known, we can obtain the ML noise estimate as 
()r - rML1r / L  . This observation yields an interesting test for a given sequence 
when the noise variance is known: if the estimated noise variance is close to the 
actual noise variance, we may have some degree of confidence that is the ML 
solution. The difference between the actual and the estimated noise variance can 
be used as a stopping criterion for any detection algorithm. 

3. A GENETIC ALGORITHM FOR ML DETECTION 

The task of finding a sequence that fulfils the requirements established in (6) is by 
no means simple. In fact, an exhaustive search is the only known exact algorithm. 
However, the associated computational cost is prohibitive even for a modest value 
of N,  since the relation between N and the number of possible sequences is gov- 
emed by an exponential law. This undesirable feature renders imperative the use 
of techniques capable of allying the parsimony required by a practical application 
to a remarkable search capability. Furthermore, due to the lack of expert informa- 
tion, it is necessary that the proposed algorithm be based on a framework as gen- 
eral as possible. 

Genetic Algorithms (GA) 141 belong to the distinct class of techniques that proved 
themselves capable of meeting the aforementioned demands in countless 
occasions. In very simple terms, a GA can be understood as a population-based 
stochastic search procedure inspired by elements of the modem evolution theory, 
such as selection, recombination (crossover) and mutation. Its remarkable search 
potential derives from the synergy among these elements, which implicitly com- 
bines the ideas of local and global search. 

The promising characteristics of GAS, together with their reported success in 
problems similar to the one at hand [ 5 ] ,  justify our proposal: to use an evolution- 
ary technique as the basis of a paradigm for approximate blind ML sequence esti- 
mation. In other words, we will attempt to solve the problem posed by (6) with a 
genetic algorithm. Since solving (6) is equivalent to maximizing the likelihood, 
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the proposed solution is equivalent to a GA having the likelihood function as the 
fitness measure. The proposed GA, heuristically built to accomplish this particular 
task, is presented in Table I .  

Table 1: Proposed Genetic Algorithm 
1. Iititinlizatinri 

Randomly create the Nlnd individuals of the initial population. Each 
individual consists of a candidate for the transmitted sequence, a . 

?. W7rile Stopping Criterion is not Achieved 

? . I  - Create an lnferaiediate Population wiih 2N,"d Individuals 

Select 1 %Nina individuals by means of a binary toumament 
InseIt 0.2Nind randomly generated individuals 

?.2 - Uniform Crossover 

Divide the individuals of the intermediate population into pair: 
(parents) 
Randomly choose NI2 positions of the chromosome 
Switch the bits associated with the chosen positions, thereby produc- 
ing two offsprings 
Replace the parents by the offsprings 

. 
?.3 - Muration 

Change, with probability pm, bits belonging to the individuals of thf 
intermediate population 

2.4 - Final Seleciion 

0 Select 50% of the individuals from the best 10% of the intermediati 
population 
Select SO% of the individuals from the worst 40% of the intermediati 
population 
Select SO% of the individuals from the remaining 50% of the interme 
diate population 

0 

2.5 -Elitism 

Reintroduce the best individual of the population if it has been lost. 1 
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4. APPLICABILITY ISSUES 

In this section, we discuss some practical aspects of the CA presented in Table 1. 
We begin by observing that the computational cost of the proposed GA stems 
mostly from the computation of the fimess of the individuals in the population; the 
other steps in the algorithm have negligible cost. Since the fitness is computed 
2Nmd times per iteration, the number of individuals in the population directly af- 
fects the cost of each iteration of the proposed F A .  

As seen in Table 1, the individuals in the population of the proposed GA consist 
of candidates for the transmitted sequence, i . This is a very attractive feature, 
since it allows the C A  to incorporate any knowledge about the transmitted se- 
quence. For instance, the proposed GA can be easily adapted to semi-blind sys- 
tems, where a short training sequence is transmitted. In this case, the entries of i 
corresponding to the training symbols remain constant at their known values, and 
are not subject to mutation and crossover. Other important structures of the trans- 
mitted sequence arise in systems where error-control coding is present andior 
where a higher-order modulation is used [ I ] .  In these cases, we are actually inter- 
ested in recovering the message hits m that are fed to the encoder or the modula- 
tor, whereas the channel input a is, to some extent, of no interest other than aiding 
in the estimation of m. The proposed GA can easily exploit the structure induced 
by encoding and modulation by working directly on the message hits. The compu- 
tation of the likelihood of a given m is normally straightfonvard, since, in most 
cases, the encoding and the modulation functions are easy to compute; therefore, 
the channel input a corresponding to a given m can be easily determined and used 
in (6) to compute the likelihood of m. 

In contrast to the current proposal, the individuals in the population of the GA 
proposed in [ 5 ]  consist of channel estimates. These estimates are used in a Viterhi 
algorithm to determine the most likely transmitted sequence assuming that the 
channel estimates are correct. The likelihood function is then computed using (2). 
However, since the complexity of the Viterbi algorithm grows exponentially with 
the channel length M and the size of the modulation, the computation of the fit- 
ness in [SI is impractical for systems with long impulse responses or high modula- 
tion orders. Furthermore, determining the most likely transmitted sequence for a 
given channel estimate is normally very hard in coded systems. In fact, in most 
cases the only known exact solution is also exhaustive search. Thus, the system 
proposed in [5 ]  cannot be easily used in coded systems. 

Finally, it should be noted that GAS, in spite of their remarkable search capability, 
cannot provide successful convergence at a guaranteed cost. In other words, each 
execution of a GA may require a varying number of iterations to converge. This 
observation may limit the applicability of a GA in real-time systems. However, 
practical applications of the proposed system can still be envisioned. For instance, 
consider an application in which the channel impulse response changes slowly 
with time. In this case, the channel estimates produced by the proposed GA may 
be used to periodically and blindly initialize other blind ML algorithms such as 
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Parameter 
Number of Individuals Nmd 

Probability of Mutation (p,) 
Individuals per Toumament 

691 

Value 
180 

0.002 
2 



5.2 - Clrarinel C2 

Despite the higher complexity of the problem engendered by this channel, we 
decided to use the same number of individuals as in the previous example, thus 
keeping the computational cost per iteration of both cases at similar levels. The 
parameters of the GA for channel C2 are shown in Table 3. 

Iteration 

Figure 1 .  Evolution o f  the average fitness and of the fitness of the best individual 
for channel C l .  

Once more, the optimal solution was attained in all twenty trials, which strongly 
reasserts the feasibility of the use of GAS in this particular problem. The average 
number of iterations was 1,802.8, and the maximum number was 5,098, being the 
increase justified by the more demanding channel structure. The average number 
of cost evaluations was 649,188, a value once more much smaller than Nt0w 

In Fig. 2, we present the evolution of the average fitness, as well as a typical time 
evolution of the fitness associated with the best individual in the population. 
Again, we see a significant difference between the average fitness and the maxi- 
mum fitness, indicating that there is no loss of diversity in the population. Two 
other aspects deserve special attention: 1)  again, the convergence was quite fast at 
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the beginning; 2) the “refinement” stage was more arduous due to the peculiar 
character of the second channel. Note that in the refinement stage, the value of the 
fitness remains constant for over 2,000 iterations. A possible explanation for this 
undesirable behavior is an insufficient selective pressure associated with the loss 
of good individuals. 

0 500 1000 1500 2a30 2500 3000 35m 
Iteration 

Figure 2. Evolution of the average fitness and of the fitness of the best individual 
for channel C2. 

6.  CONCLUSIONS 

In this paper, we proposed a GA for blind ML detection. The proposed algorithm 
works directly on the transmitted sequence, bypassing the Viterbi algorithm and 
direct channel estimation. Thus, the search strategy is based on a low-complexity 
structure that can be used even for channels with long impulse responses. The 
receiver presented a remarkable performance under the simulation scenarios con- 
sidered in this paper, where it was able to correctly detect all transmitted se- 
quences when no noise was present. Furthermore, the proposed algorithm was 
able to detect the transmitted sequence in a scenario where a very short sequence 
was transmitted. This is in contrast to other traditional blind equalization tech- 
niques, which require hundreds or even thousands of symbols before they can 
accurately equalize the channel. 

In spite of its remarkable performance, the proposed GA can still be improved. In 
particular, the GA showed a fast improvement of the fitness in the initial stages, 
but a very slow improvement in the final stages. Overall, the convergence of the 
algorithm is rather slow. Devising a better strategy for the refinement of the popu- 

693 



lation in the final stages, as well as a strategy to speed up convergence, are the 
object of current investigation. Finally, the use of the proposed GA for systems 
with long impulse responses, a short training sequence, higher-order modulation 
or error-control coding is also being investigated. 
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