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Abstract— Multiple-input multiple-output (MIMO) wireless
systems are known to be robust against fading, providing what
is known as diversity gain. However, if traditional techniques to
obtain diversity are used, the receiver complexity for a MIMO
channel with intersymbol interference (ISI) may be unfeasible.
In this paper, we investigate the use of random signal mapping
as a source of diversity gain for MIMO channels with ISI. We
theoretically demonstrate that the proposed system has much
lower complexity than existing solutions and is robust against
channel mismatch. Simulation results also show that the new
scheme provides good diversity gain.

I. INTRODUCTION

Wireless systems with multiple transmit and/or receive
antennas have been the topic of intense research activity lately.
The interest in these multiple-input multiple-output (MIMO)
systems was spurred by two results. First, in two independent
works, Telatar [1], and Foschini and Gans [2] showed that a
significant increase in capacity can be obtained in wireless
systems when multiple antennas are employed at both the
transmitter and the receiver. Besides this increased capacity,
multiple antennas can also lead to increased robustness against
fading, even without channel knowledge at the transmitter.
Indeed, in [3], Tarokh et al proposed a transmission scheme
known as space-time coding (STC). In STCs, redundancy is
introduced into the transmit streams both in space (across
transmit antennas) and in time, leading to diversity and coding
gains.

STCs for flat fading channels have been extensively ana-
lyzed, and they can essentially be divided into space-time trel-
lis codes (STTC) [3]–[5] and space-time block codes (STBC)
[6], [7]. However, for high bit rates, the transmit bandwidth
may be larger than the channel coherence bandwidth [8], [9].
In this case, the channel becomes frequency selective, leading
to intersymbol interference (ISI). During the past few years,
several equalizers have been proposed that deal with the ISI
problem in MIMO wireless systems [10]–[13].

Recently, a new transmission strategy that achieves spatial
diversity based on a random signal mapper (RSM) was pro-
posed in [14]. In RSM, the bit stream is first encoded with a
regular error-correcting code. Then, N copies of the encoder
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output are generated, where N is the number of transmit
antennas. Each of these copies goes through a random signal
mapper, whose output is then transmitted through one antenna.
This simple scheme achieves full diversity. Furthermore, the
RSM receiver has much lower complexity than that of STBCs,
which is itself less complex than that of STTCs. In addition,
transmit and/or receive antennas can be added to an RSM
scheme without significant changes to the system, a flexibility
not found in STBCs and STTCs. Finally, in many STBCs,
adding more transmit antennas incur in a rate penalty, but this
penalty is not observed in RSM.

RSM was originally proposed for flat-fading systems. In this
paper, we extend RSM to ISI MIMO wireless channels. To
that end, we propose the use of a parallel-concatenated turbo
code [15], and a receiver employing a turbo equalizer [16].
MIMO systems based on turbo equalizers were first proposed
in [10]. However, these are based on STTCs. As we will see,
such turbo equalizers are much more complex than that of
an RSM receiver. Indeed, the computational complexity in
the receiver of [10] grows exponentially with the number of
transmit antennas, N , while the complexity of the proposed
receiver is not a function of N . Obviously, this represents a
significant reduction in complexity. Finally, we will provide
simulation results that show that RSM also achieves diversity
gain in frequency selective wireless channels.

This paper is organized as follows. In Section II, we present
the model of the frequency selective wireless channel, the
RSM transmission scheme, and the proposed turbo equalizer.
In Section III, we present simulation results that illustrate
the system performance under different number of antennas,
different block lengths and under imperfect channel knowledge
at the receiver. In Section IV, we compare the complexity of
the proposed scheme to that of existing alternatives. Finally,
we draw some concluding remarks in Section V.

II. CHANNEL MODEL, TRANSMITTER AND RECEIVER

Consider the transmission of a sequence of equiprobable
and independent message bits uk using N transmit antennas.
To that end, we use the RSM transmitter depicted in Fig. 1.
The bits first go through a parallel-concatenated turbo code,
whose internal interleaver has length I . The output of the
encoder then goes through another interleaver of length J , and
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Fig. 1. Block diagram of the proposed transmitter, with N transmit antennas,
turbo encoding and random signal mapping. Π represents the interleaver and
the m-PSK mapper.

is then mapped into an m-PSK symbol. These two operations
are represented by Π in Fig. 1, and they result in a block of
m-PSK symbols xk. This block then goes through N random
signal mappers, whose outputs are given by si

k = ejφi
kxk,

for i = 1, · · · , N , where φi
k are N independent sequences

of random phases known also to the receiver. Finally, the
sequence si

k is transmitted through the i-th antenna with
energy ES/N .

The receiver employs M antennas. The signal received by
the j-th receive antenna at time instant k, yj(k), is given by

yj(k) =
N∑

i=1

D−1∑
d=0

√
ES/N si(k − d)hi,j(d) + ηj(k), (1)

where ηj(k) is the zero-mean additive white Gaussian noise
with variance N0/2 per dimension, and hi,j(d) is the d-th
coefficient of the impulse response of the channel between
the i-th transmit antenna and the j-th receive antenna. The
coefficients hi,j(d) are assumed to be zero-mean independent
and identically distributed Rayleigh random variables with
variance σ2

d, where
∑D−1

d=0 σ2
d = 1. We further assume that

the channel coefficients are spatially uncorrelated and remain
constant during the transmission of one block, i.e., one code-
word of the turbo code.

Note that (1) can be rewritten as

yj(k) =
D−1∑
d=0

√
ESf j

k(d)x(k − d) + ηj(k), (2)

where f j
k(d) =

√
1/N

∑N
i=1 hi,j(d)ejφi

k . Thus, using RSM,
the received signal at the j-th antenna is actually the output of
a single-input single-output (SISO) channel with time-varying
taps f j

k(d). In other words, given that there are M receive
antennas, using RSM at the transmitter reduces the MIMO
channel to a single-input multiple-output (SIMO) channel. As
we will see, this reduction has no negative impact on the
diversity gain of the system.

However, reducing the MIMO channel to an equivalent
SIMO channel does have a beneficial impact on the receiver
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Fig. 2. Receiver block diagram, where D0 and D1 represent the constituent
decoders, C is the MAP channel equalizer, yk are the received symbols, τ is
the code deinterleaver, and π is the demapper and channel deinterleaver.

complexity. Indeed, we may now employ a maximum a poste-
riori (MAP) equalizer for a SIMO system, which is a straight-
forward extension of the MAP equalizer for SISO systems,
obtained at the cost of a linear (in M ) increase in complexity.
Note that, in this case, the resulting computational complexity
does not depend on the number of transmit antennas.

Without loss of generality, in this paper we focus on the
case of M = 1 receive antenna and use the turbo equalizer
proposed in [17] and depicted in Fig. 2. This receiver consists
of three blocks: a MAP equalizer, which is based on the
trellis of the channel given in (2); and two decoders, each
corresponding to a constituent encoder of the turbo code.
Each of these blocks computes extrinsic information on the
transmitted symbols. This information is passed to the other
blocks, where it is used as a priori probabilities on the
transmitted symbols [17].

III. SIMULATION RESULTS

In this section, we investigate the effect of the number
of transmit antennas, decoding delay, and channel estimation
in the performance of the proposed system. In the computer
simulations we consider that the input bits are first encoded
using a standard rate 1/3 parallel turbo encoder, with one
systematic output, and two identical constituent convolutional
encoders with generator matrix G(D) =

[
1+D+D2+D3

1+D2+D3

]
. We

also consider BPSK modulation (m = 2), M = 1 receive
antenna, ISI length D = 2 (σ2

0 = σ2
1 = 0.5), 10 iterations

of the turbo equalizer, and perfect channel knowledge at the
receiver (unless stated otherwise).

A. Number of Transmit Antennas

First we investigate the effect of the number N of transmit
antennas in the performance of the proposed system. The
interleaver length is set to I = 97, which means that the
length of the block to be transmitted through the channel is 300
symbols. The channel is considered to be quasi-static during
one symbol block. Figure 3 shows the bit error rate (BER)
versus Eb/N0, where Eb is the energy per information bit, for
N = {1, 2, 4, 8}. From the figure we can see that, at a BER of
10−3, the gain of the proposed system when compared with
a system with only one transmit antenna is of around 4, 7
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Fig. 3. BER vs. Eb/N0 for different numbers of transmit antennas (N =
{1, 2, 4, 8}), and a code interleaver of length I = 97.

and 8 dB for the cases of N =2, 4 and 8, respectively. As
a reference, we also show the BER for the case of a static
channel (without fading) with the same ISI pattern. We can
see that, for N = 8 the performance approaches that of a static
link, which means that the systems was able to overcome most
of the degradation introduced by the fading.

B. Decoding Delay

In the previous simulation the decoding delay (codeword
length) was equal to the duration of the channel, where
duration of the channel is defined as the time during which
it can be considered static. Now we allow the codeword to
extend over more than one channel duration, so that one
transmitted codeword will be affected by more than one
channel realization. Again, the channel is assumed to be
quasi-static during one block of 300 symbols, and changes
independently from frame to frame. Figure 4 shows the BER
versus Eb/N0 for the cases of N = 2 transmit antennas and
decoding delays of 1, 3 and 10 blocks (I = 97, 297 and 997,
respectively). For instance, for a delay of 10 blocks of 300
symbols, a codeword transmitted through the channel will be
affected by 10 different channel realizations.

From the figure we can see that at a BER of 10−3, increasing
the decoding delay to 3 (I = 297) and 10 (I = 997) blocks
results in gains of about 4 and 6 dB, respectively, when
compared with the case of N = 2 and I = 97. Note that the
performance for N = 2 and I = 997 is even better than the
performance for N = 8 and I = 97. Thus, it might be more
interesting to explore the gain obtained with a larger decoding
delay, than the gain obtained with the increase in the number
of transmit antennas. However, note that, strictly speaking,
we are not in a block fading environment anymore (since the
data blocks extend over more than one channel realization),
and some additional diversity gain was already expected. This
improvement should come independently of the scheme in use.
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Fig. 4. BER vs. Eb/N0 for N = 2 transmit antennas and different decoding
delays: one block (I = 97), three blocks (I = 297) and ten blocks (I = 997).

C. Imperfect Channel Knowledge

In the previous items we considered that the receiver has
perfect knowledge of the channel. In practice, it is necessary
to estimate the channel before (or during) equalization and
decoding. The Cramér-Rao bound is a lower bound for the
mean square error (MSE) of an unbiased estimator. Here, we
consider the case where a certain number P of pilots is inserted
before a block of S symbols that are going to be transmitted
through the channel. In this case, the Cramér-Rao bound is
given by [18, Eq. (11)]:

MSE[hi,j(d)] ≥ σ2
n

σ2
nρ2

h + Sσ2
s + Pσ2

p

, (3)

where σ2
n is the noise variance, ρ2

h = 1/σ2
d, σ2

s is the average
symbol energy, and σ2

p is the average pilot energy.
Figure 5 shows the BER versus Eb/N0 for N = 2, 8,

S = 300 (I = 97), P = 10, and for the cases of perfect
channel knowledge at the receiver (PCSI) and for the case
where the estimation error is a Gaussian random variable
with zero mean and variance given by (3). As we can see,
the relative degradation due to imperfect channel knowledge
increases with the increase in the number of transmit antenas.
However, for the two cases considered, the degradation is still
very small in terms of SNR.

IV. ANALYSIS OF THE COMPUTATIONAL COMPLEXITY

McEliece and Lin defined in [19] the trellis complexity
for a convolutional code, which is directly related to the
computational effort required by an algorithm like Viterbi
[20] or BCJR [21] to decode one bit, and is a function
of the trellis module [19] for that code. Even though the
trellis complexity was defined for binary codes, we can apply
this concept to trellis-based equalizers for MIMO systems.
We concentrate only in the total edge count given a certain
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Fig. 5. BER vs. Eb/N0 for N = 2, 8 and I = 97, for the cases of perfect
channel knowledge (PCSI) and for the Cramér-Rao (CRB) bound considering
P = 10.

trellis module, not taking into account the number of bits
labeling each edge, since this will be the same for every
case considered in this paper. For the case of MAP trellis-
based equalization of MIMO channels, the total edge count
(computational complexity) is proportional to [22]:

ΓSTC =
(
mN

)D
. (4)

For instance, the trellis used in the MAP equalization of a
MIMO system with m = 4, N = 2 and D = 2 is shown in
Figure 6, and its complexity is ΓSTC = 256 edges.

Using a standard STBC or STTC, it is necessary to employ
an equalizer with complexity proportional to (4). On the other
hand, for the RSM scheme the equivalent channel reduces to
the SIMO model given by (2), whose total edge count for
MAP equalization is proportional only to

ΓRSM = (m)D
, (5)

yielding a savings that increases exponentially with the number
of transmit antennas. For instance, for the same case shown
in Figure 6 (m = 4, N = 2 and D = 2), the trellis used in
the MAP equalization in the case of RSM is shown in Figure
7, and its complexity is of only ΓRSM = 16 edges.

Table V shows the total edge count for MAP equalization
considering space-time coding (STC) and random signal map-
ping (RSM), varying the number of transmit antennas N , the
ISI length D, and 4-PSK modulation. From the Table we can
see that the total edge count for the case of STC rapidly
explodes, even for relatively small values of N and D. For
the case of RSM, the total edge count increases moderately
with D, and simply does not change with the increase of the
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Fig. 6. Trellis used in the MAP equalization of a MIMO channel with
m = 4, N = 2 and D = 2, and space-time coding (STC).
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Fig. 7. Trellis used in the MAP equalization, for the case of m = 4, N = 2
and D = 2, and random signal mapping (RSM).

number of transmit antennas N . This is due to the fact that
the receiver is designed based on the SIMO model defined by
equation (2).

V. CONCLUSION

We have presented a turbo equalization scheme with re-
duced complexity for systems with multiple transmit antennas.
Diversity is obtained through the use of a parallel-concatenated
turbo code and the insertion of a random signal mapper in
each transmit antenna branch, avoiding the use of a space-time
encoder. This latter modification allows the equivalent channel
model to be reduced from a MIMO to a SIMO one, yielding
large savings in computational complexity. Computer simu-
lations showed that the proposed scheme is able to provide
diversity gain, and is robust against channel mismatch. More-
over, we also investigated the effects of decoding delay and the
number of transmit antennas in the system performance. We
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TABLE I

TOTAL EDGE COUNT FOR MAP EQUALIZATION, FOR THE CASES OF

SPACE-TIME CODING (STC) AND RANDOM SIGNAL MAPPING (RSM),

VARYING THE NUMBER OF TRANSMIT ANTENNAS N , THE ISI LENGTH D,

AND 4-PSK.

RSM STC
D N = 2, 4, 8 N = 2 N = 4 N = 8
2 16 256 65536 4, 30 × 109

3 64 4096 1, 68 × 107 2, 82 × 1014

4 256 65536 4, 29 × 109 1, 85 × 1019

5 1024 1048576 1, 10 × 1012 1, 21 × 1024

6 4096 1, 68 × 107 2, 82 × 1014 7, 92 × 1028

showed that increasing the delay may have a greater impact
than increasing the number of transmit antennas.
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