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Abstract— In this paper, we describe a hardware implemen-
tation of a low-density parity-check (LDPC) code for the MI-
SBTVD Project described in [1], which aims at the development
of an advanced Digital Television (DTV) System for the SBTVD
Program. We begin the paper by describing the concept of LDPC
codes and the design strategies we have used. We also provide
some simulation results that show that the proposed code greatly
outperforms codes used by other DTV standards. Finally, we
provide details of the hardware implementation of the code.
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I. INTRODUCTION

Low-density parity-check (LDPC) codes were introduced

in 1962 by Gallager [2], who also proposed an iterative

decoding algorithm for them, known as the sum-product

algorithm (SPA). However, LDPC codes laid more or less

dormant until the late 1990’s, when they were rediscovered by

MacKay [3]. Recently, LDPC codes were shown to be able to

compete in performance with turbo codes of similar decoding

complexity. Besides, they have the advantage of allowing a

finer adjustment of the trade-off between performance and

decoding complexity [4].

Furthermore, the SPA has been shown to be part of a

more general class of algorithms, known as message-passing

algorithms, which also includes the min-sum. The min-sum
algorithm performs a little worse than the SPA, but have

lower complexity, offering an alternative for resource-limited

implementations. Most of the current research on LDPC codes

deals with decoder implementation details. Some of the issues

faced by system designers are related to the trade-off between

memory and processing time, which basically depends on the

degree of parallelism used in the implementation, or the trade-

off between memory and performance, which is related to the

number of bits used for data representation at the receiver.

Another challenge faced by designers of practical LDPC

systems is encoding complexity. Richardson and Urbanke [5]

proposed an encoding method for a random LDPC code with
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average complexity of 0, 0172n2 + O(n) for typical irregular

codes. Another approach to reduce encoding complexity is to

design structured parity-check matrices that permit the use a

systematic encoding algorithm. One such case is the family

of the so called extended irregular repeat-accumulate (eIRA)

codes [6], described later in this paper.

In this article, we detail a practical implementation of an

LDPC channel coding system developed for digital televi-

sion transmission. We offer a complete description of the

development process, from the code design to the hardware

implementation of the codec. As a starting point, we used

eIRA codes, partly inspired by the LDPC codes specified by

the DVB-S2 standard [7]. As will be shown in the remainder

of this article, many of the constraints that needed to be

imposed at the code design level were directly related to the

limitations at the hardware implementation level. Therefore,

the development process moved back-and-forth from code

design to hardware design, until a satisfactory system could

be implemented and tested.

The basic concepts of LDPC codes are discussed in more

detail in Section II. Section III describes the method used

to design structured eIRA codes with optimized performance

for the constraints available. The performance of the resulting

codes is described in section IV. Section V describes the de-

tails for the hardware implementation of the decoder. Finally,

Section VI concludes the article.

II. LDPC CODES

LDPC codes are (n, k) binary linear block codes that have

a low-density parity-check matrix H. They may be described

in terms of a Tanner graph [8], which is a bipartite graph

containing variable and check nodes. Each bit in the codeword

corresponds to a variable node, and each parity-check equation

corresponds to a check node. A variable node is connected

to a check node in the Tanner graph if and only if the

corresponding codeword bit takes part in the corresponding

parity-check equation. For instance, Fig. 1 shows the Tanner

graph associated with the (7, 4) Hamming code, whose parity-

check matrix is given by

H =

⎡
⎣1 0 0 1 1 0 1

0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎤
⎦ . (1)

In Fig. 1, the thick lines correspond to the second row of H.

In [4], it was shown that the performance of an LDPC code

is determined by the so-called degree distribution, which we
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Fig. 1. Tanner graph for the (7, 4) Hamming code.

now define. We first define the degree of a node to be the

number of edges connected to it. Let λi (resp. ρi) be the

fraction of edges connected to variable nodes (resp. check

nodes) of degree i. Then, λ(x) =
∑

i λix
i−1 is the variable

node degree distribution, and ρ(x) =
∑

i ρix
i−1 is the check

node degree distribution. Since these polynomials determine

the performance of an LDPC code, several algorithms have

been proposed to determine the optimal distributions. These

will be discussed in Section III-A.

A. Decoding LDPC Codes

The main goal of any decoding algorithm is to determine

the maximum a posteriori (MAP) estimates of the transmitted

bits, since these minimize the BER. For binary systems, com-

puting the MAP estimate of ci, the i-th bit of the transmitted

codeword, is equivalent to computing the log-likelihood ratio

(LLR)

Li = log
Pr(ci = 0|r)
Pr(ci = 1|r) , (2)

where r is the received sequence. Then, the MAP estimate is

ci = 0 if Li > 0, and ci = 1 otherwise. Computing the LLR

precisely is not computationally feasible. However, based on

the Tanner graph, it is possible to derive iterative algorithms

that compute good approximations for the LLR.

The iterative algorithms are based on an exchange of

messages between the variable nodes and the check nodes.

Considering the sum-product algorithm (SPA) [3], [2] and a

variable node j, the SPA computes the message going from

this node to a check node i as

vi =
∑
j �=i

uj . (3)

The message from a check node to a variable node is

ui = 2 tanh−1

⎛
⎝∏

j �=i

tanh
(vj

2

)⎞
⎠ . (4)

Note that for both types of nodes the outgoing message at

a given edge is not a function of the incoming message at

that same edge. This means that all messages correspond

to extrinsic information, which avoids positive feedback of

information.

B. Encoding LDPC Codes

As seen above, decoding LDPC codes is fairly easy. Un-

fortunately, encoding LDPC codes is not as simple. Indeed,

______

Fig. 2. The encoder for the extended irregular repeat-accumulate code.

assume that we want to obtain the systematic generator matrix

G corresponding to H. We begin by writing H as

H = [H1 H2] , (5)

where H1 and H2 are n − k × k and n − k × n − k binary

matrices. Then, G is given by

G =
[
Ik HT

1 H−T
2

]
. (6)

Unfortunately, the inverse of a sparse matrix is not sparse, so

brute-force encoding using G is a complex operation.

Several LDPC codes have been proposed that have low-

complexity encoding. Normally, this is achieved by imposing

some structure on the parity-check matrix. In this paper, we

use the extended irregular repeat-accumulate codes (eIRA) of

[11]. In these codes, the matrix H1 is still randomly generated

to meet the prescribed degree distributions. The matrix H2,

on the other hand, is given by

H2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 0
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0
0 0 0 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Using this definition, the multiplication of a vector by H−T
2

can be implemented with a simple accumulator. The resulting

encoder for the eIRA is shown in Fig. 2.

C. Capacity of LDPC Codes

For many channels and iterative decoders, LDPC codes

exhibit a threshold of convergence, i.e., as the block length

tends to infinity, an arbitrarily small bit-error probability can

be achieved if the noise level is smaller than a certain thresh-

old. For a noise level above this threshold, on the other hand,

the probability of bit error is larger than a strictly positive

constant. To determine the value of this threshold Richardson

and Urbanke developed an algorithm called density evolution
[4], [9], which iteratively computes the probability density

functions (pdf) of the messages.

However, the computation of the threshold and the opti-

mization of λ(x) and ρ(x) through density evolution are still

computationally intense tasks. A low-cost alternative is based

on the observation that the pdf of the messages v can be well

approximated by Gaussian mixtures. However, the same is not

valid for the messages u. Thus, Ardakani and Kschischang

[10] proposed a semi-Gaussian approximation, wherein the

pdf of the messages v is computed under the Gaussian-mixture

approximation (so that only the means and variances of the
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constituent Gaussians need to be evaluated), while the pdf of

the messages u is computed applying just one iteration of the

density evolution algorithm.

III. PROJECT OF STRUCTURED EIRA CODES FOR DIGITAL

TELEVISION

The project of a structured eIRA LDPC code [6], [11] con-

sists of two stages: the optimization of the degree distributions

λ(x) and ρ(x) and the construction of the H1 submatrix of the

parity check matrix. In the first stage, the goal is to maximize

the noise threshold of the code for a given rate. In the second,

the objective is to distribute the “1’s” in H1 respecting the

degree distributions, minimizing the small cycles in the Tanner

graph and facilitating the storage of H1. In this section, we

describe these two stages in more detail.

A. Optimizing λ(x) and ρ(x)

The joint optimization of λ(x) and ρ(x) is a task with a

heavy computational cost. However, it is possible to reduce

this complexity using a concentrated degree distribution for

ρ(x) without much loss in performance [15]. In this case,

the degree of all check nodes can be fixed to dr and the

optimizations is made just over λ(x). Employing density

evolution with the semi-Gaussian approximation, it is possible

to reduce the problem to the following linear program

maximize
∑dl

i=2
λi

i

subject to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λi ≥ 0∑dl

i=1 λi = 1
λ1 = 1

(n−1)

∑dl

i=2
λi

i

λ2 = 2(n−k−1)
(k+1)

∑dl

i �=2
λi

i∑dl

i=2 λigi(pin) < pin ∀pin ∈ (0, p0]
(8)

where the constraints imposed by the matrix H2 are taken

into account.

The inputs to this linear program are the channel model,

the noise level (threshold), the codeword length n, dl and

ρ(x) = xdr−1. The optimization process is repeated and the

input noise level is changed until the resulting code rate is

equal to the required rate r.

As a digital television system requires a quasi-error free

reception (BER=10−11), our goal for the design of the LDPC

codes was to get the code with the best performance at a

BER=10−5. In the overall system, an external Reed-Solomon

code will be responsible for minimizing any error-floor and

producing a quasi-error-free receiver output.

B. Building the Parity Check Matrix

As a first step to constructing a matrix H1 of dimension

(n − k) × k, a matrix A is created with dimension a × b,

m times smaller then H1. As will be shown ahead, m is

the number o branches that can be processed in parallel

by the decoder. The matrix A is constructed respecting the

computed degree distributions λ(x) and ρ(x) and minimizing

the short cycles in the Tanner graph. This can be done with

the progressive edge-growth algorithm [12].

Now, replacing each “0” in A by a null square matrix of

order m and each “1” by permutations of the identity matrix

I of order m, a matrix B is built with the same dimensions

of H1. The permutation pattern for the “1” can follow the

array codes [13]. In this case, the matrix H1 is obtained by

permutations of the rows of B.

The process does not avoid short cycles in the Tanner graph,

but greatly reduces them. Furthermore, the regularity in the

sub-matrix H1 allows for a compact storage of the parity

matrix H and reduces the complexity of the codec.

IV. SIMULATION RESULTS

A DTV receiver must be robust to several kinds of channels.

However, as shown in [14], LDPC codes designed for AWGN

channels are still robust for other channels. Thus, the codes

were designed for the AWGN channel.

The chosen code rates were 1/2, 2/3, 3/4, 5/6 and 7/8,

and the codeword length was 9792 bits. Employing density

evolution with semi-Gaussian approximation as described in

Section III, resulted in the degree distributions and threshold

of convergence of Table I. The capacity of these degree

distributions vary from 0.13 dB to 0.37 dB away from

Shannon limit for the binary-input AWGN channel.

TABLE I

DEGREE DISTRIBUTION

rate 1/2 2/3 3/4 5/6 7/8

ρ(x) x6 x11 x16 x23 x25

λ1 0.00003 0.00003 0.00002 0.00003 0.00003
λ2 0.2857 0.1666 0.1176 0.0833 0.0769
λ3 0.2544 0.3779 0.4118 0.5000 0.6923
λ5 0.1223
λ6 0.2308
λ9 0.0989
λ10 0.3197 0.4167
λ11 0.0180
λ12 0.3566 0.4767

thresh. (dB) 0.428 1.236 1.804 2.582 3.211
gap (dB) 0.24 0.13 0.18 0.27 0.37

Monte Carlo simulations were done with the codes gener-

ated with the ensembles in Table I. Fig. 3 shows the perfor-

mance in terms of bit error rate (BER). These codes are 0.7
dB to 1 dB away from Shannon Limit for the binary AWGN

channel (considering a BER equivalent to 10−5). We can also

see in Fig. 3 that the designed (9792,4896) LDPC code is

3 dB better (at BER=10−5) than the convolutional code of

the DVB-T and ISDB-T systems. For these simulations we

considered BPSK modulation, AWGN channel and m = 51
decoder branches. The BER was computed after 50 wrong

codewords, using 50 iterations in the sum-product decoder.

V. HARDWARE IMPLEMENTATION

Among the different code rates considered for the proposed

digital television implementation, we have chosen the 3/4 rate

with a codeword length of 9792 bits. Thus, each codeword

will consist of 7344 information bits and 2448 parity bits.

The decoder arrangement could be serial, in the form of

a trellis structure, or parallel, in the form of a tree topology.
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Fig. 3. Performance for the LDPC codes for Digital Television. Also shown
are the Shannon limit and the performance of the convolutional code used in
DVB-T and ISDB-T, both for rate 1/2.

The trellis structure has been adopted, especially due to the

fact that it consumes an area significantly smaller than that of

the parallel structure. Next we discuss the structure in more

detail.

Perhaps the most significant point in the implementation

stage is how to deal with the trade-off between high-speed

processing and the device silicon area occupation. The mini-

mum throughput required by the proposed system is 19.33

Mbps. On the other hand, there is the device’s physical

limitation of the silicon area, which limits the parallelization

degree of the implementation.

The encoding and decoding systems were implemented

into Field Programmable Gate Arrays (FPGA). The LDPC

encoder was developed in Very High Speed Integrated Circuit

Hardware Description Language (VHDL – IEEE 1164) using

Quartus, a development tool from Altera. The LDPC decoder

was implemented using VHDL and System Generator, from

Xilinx. The encoder and decoder implementation details are

presented next.

A. LDPC Encoder

As seen in Fig. 2, the LDPC encoder multiplies the message

by HT
1 and sends the result through an accumulator. The ac-

cumulator is implemented with a single exclusive OR (XOR),

which is easy to implement. On the other hand, a significant

problem is how to store the matrix H1, which has dimensions

7344× 2448. Fortunately, as discussed in Subsection III-B, it

is only necessary to store the indices of the variable nodes

connected to the 144 check nodes indexed by multiples of m,

which in our case is 51. The variable-node indices are stored

in a structure T, which has 112 3-element rows and 32 12-

element rows. Since each element in T is 12-bits long, H1 is

represented using a total of 8.6 kbits, a reduction by a factor

of approximately 2000, compared to the full representation.

Furthermore, the structure T was stored in 15 independent

block RAMs (BRAMs), 3 holding the elements of the first

112 rows and 12 holding the elements of the last 32 rows.

This allows simultaneous access to all the data necessary at

each iteration, during which one parity bit is determined.

B. LDPC Decoder

For a hardware based decoder implementation, the expres-

sions (3) and (4) can be rewritten for better efficiency. The

total information available in the variable node v is given by

v =
∑

j uj . Then, the variable node messages, shown in (3),

can be efficiently computed as

vi = v − ui, (9)

which requires just 2wv + 1 additions. For the check-node

operation in (4), it is possible to avoid the direct computation

of the transcendental function tanh. Assuming a check node

with degree two and incoming messages U and V , (4) can be

rewritten as

L(U ⊕ V ) = 2 tanh−1

(
tanh

U

2
tanh

V

2

)

= min{|U |, |V |} + z(U, V ),
(10)

where z(U, V ) = log
(

1−exp−|U+V |

1−exp−|U−V |

)
is the correction term.

Approximating the correction term by z(U, V ) ≡ 0,

yields the lowest computational complexity, and the min-
sum algorithm. An expression with a better tradeoff involving

computational cost, precision and quantization effect is the

constant approximation [17], given by

z(x, y) =

⎧⎪⎨
⎪⎩

0.5 if |x| ≤ 2, |y| > 2|x|
−0.5 if |y| ≤ 2, |x| > 2|y|

0 otherwise.

(11)

For the whole check node operation, different topologies

can be used [16]. The brute-force computation of (4) is the

most complex. A parallel implementation allows the highest

throughput at the expense of the largest hardware area and

more quantization effects. On the other hand, the serial
implementation is very robust against quantization effects

and requires less hardware resources when synthesized on an

FPGA.

For a serial implementation, (4) can be rewritten as

u1 = L(b2) (12)

ui = L(fi−1 ⊕ bi+1), i = 2, . . . , wc − 1 (13)

uwc = L(fwc−1) (14)

where f1 = c1, f2 = f1 ⊕ c2, . . ., fwv = fwv−1 ⊕ cwv , bwv =
cwv

, bwv−1 = bwv
⊕ cwv−1, . . ., b1 = b2 ⊕ c1 are two sets of

random auxiliary variables representing forward and backward

message propagations among check nodes. One may note that

the evaluation of ui message by equation (13) requires the

determination of the parameters L(f1), . . . , L(fwv ), L(b1),
. . ., L(bwv ). These can be recursively determined replacing

the known values for L(c1), . . ., L(cwv
) in equation (10). The

resulting computational complexity is bounded by 3 ·(wv −2)
operations.

The implemented decoder architecture was similar to that

used in [18]. As seen in Fig. 4, this implementation has seven
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major subcomponents: incoming buffer (inBuffer), output

buffer (outBuffer), variable nodes processors (vnp), check

node processors (cnp), interleaver and deinterleaver, and a

control unit (CR). The last five units form the kernel.

Interleaver

inBuffer

outBuffer

...

de-Interleaver

vnp vnp

cnp
1

...
cnp
P

...

de-zigzag

zigzag

vnp vnp...

IN
 R

A
M

1

IN
 R

A
M

P

P
N

 R
A

M
 P

P
N

 R
A

M
1

C
N

 R
A

M
1

C
N

 R
A

M
2

C
N

 R
A

M
P

+
1

C
N

 R
A

M
2P

Control
Unit

Fig. 4. The LDPC decoder architecture.

The inBuffer is responsible for maintaining all data block

available and accessible to the kernel. It has a two block sized

circular buffer with serial load and parallel read structure in

order to minimize kernel stalls. The vnp compute (9) and the

cnp compute (10). Both the interleaver and the deinterleaver

perform random row addressing and random column rolling

operations. A whole LDPC decoder block is sent in parallel

between vnp and cnp through the interleavers and are stored

and read from two internal data memories that hold LLR

message values.

C. Results
The LDPC encoder was implemented in a Altera Stratix

II 2S60 FPGA and developed in VHDL (Very High Speed

Integrated Circuit Hardware Description Language). With the

repeat accumulate structure of Fig. 2 and the regularity in the

matrix H1, the encoder has a low computational complexity.

In fact, only 4% of the device area and 5% of the built-in

block RAMs were consumed.
For the decoder, we employed the constant approximation

for the correction term and the serial implementation. The

decoder was designed for a Xilinx Virtex II XC2V3000 FPGA

using VHDL and System Generator, also from Xilinx. The

clock frequency for the FPGA board was set to 97 MHz.

The resource usage for the decoder were 186 built-in block

RAMs (96%) and 9478 slices (61%). The messages were

stored with 5 bits (1 for signal, 3 for the integer part and 1 for

the fractional part) and, to respect the minimum throughput,

the maximum number of iterations was set to 13.

VI. CONCLUSIONS

In this paper, we have described the design of an LDPC

code and its hardware implementation. We have seen that the

eIRA used in this paper indeed allows for a low-complexity

encoder implementation, using less than 5% of an FPGA area

and memory. The decoder implementation is more complex,

occupying most of the device area. Simulation results show

that for the AWGN channel and at a BER of 10−5, the

proposed code operates within 1 dB of the Shannon limit, and

outperforms the convolutional code used in other systems by

around 3 dB.
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