

UNICAMP – Faculdade de Engenharia Elétrica e de Computação EA-619 Laboratório de Análise Linear

Experiência 4: Sistemas Descritos por Equações Diferenciais Não-Lineares

21 de setembro de 2006

Sumário

1	Introdução	1				
2	Considerações Gerais					
	2.1 Exemplos	3				
	2.1.1 Pêndulo Simples	3				
	2.1.2 Problema Predador-Presa	4				
	2.1.3 Pêndulo Invertido	4				
3	Sistemas Autônomos e Pontos de Equilíbrio	6				
4	Sistemas de 2a. Ordem Autônomos: Plano de Estado/Fase	7				
5	Algumas Noções de Estabilidade					
6	Linearização	10				
7	Solução Periódica e Ciclo Limite	12				
	7.1 Pêndulo Simples	13				
	7.2 Problema Predador-Presa	14				
	Roteiro	16				

1 Introdução

Sistemas dinâmicos lineares são aqueles descritos por equações diferenciais (ou a diferenças) lineares. O termo linear refere-se à aplicabilidade do Princípio da Superposição, isto é, se o sinal de entrada $u_1(t)$ produz como solução $y_1(t)$ e se o sinal de entrada $u_2(t)$ produz como solução $y_2(t)$, então o sinal de entrada $\alpha u_1(t) + \beta u_2(t)$ produzirá a solução

Exp. 4

 $\alpha y_1(t) + \beta y_2(t)$, quaisquer que sejam os sinais $u_1(t)$ e $u_2(t)$ e os reais α e β . A análise e a síntese de sistemas lineares são extremamente facilitadas devido a existência de soluções analíticas para equações diferenciais (ou a diferenças) lineares.

Entretanto, sistemas reais são em geral não-lineares, com comportamento mais complexo que o exibido pelos sistemas lineares. Sistemas não-lineares são representados por equações diferenciais (ou a diferenças) não-lineares e não satisfazem o Princípio da Superposição. Quase sempre estas equações não possuem soluções analíticas e freqüentemente é possível obter apenas estimativas ou soluções aproximadas das verdadeiras soluções.

Nesta experiência apresenta-se uma introdução ao estudo qualitativo de equações diferenciais não-lineares, com ênfase na análise de características importantes das equações de 2a, ordem.

2 Considerações Gerais

Um modelo matemático que descreve diversos sistemas não-lineares é a equação não-linear de 2a. ordem, genericamente representada como

$$\frac{d^2}{dt^2}y(t) = f(y(t), \dot{y}(t), u(t)), \quad t \ge 0$$
 (1)

onde t é o parâmetro tempo, u(t) é a função de entrada e y(t) é a solução da equação ou função de saída. Definindo

$$x_1(t) = y(t) (2)$$

$$x_2(t) = \dot{y}(t), \tag{3}$$

a equação de 2a. ordem (1) pode ser expressa como um sistema de duas equações de 1a. ordem:

$$\dot{x}_1(t) = x_2(t) \tag{4}$$

$$\dot{x}_2(t) = f(x_1(t), x_2(t), u(t)),$$
 (5)

Definindo os vetores $((\cdot)^T$ significa transposto de (\cdot))

$$\mathbf{x}(t) = [x_1(t) \ x_2(t)]^T \tag{6}$$

$$\mathbf{f}(x(t), u(t)) = [x_2(t) \ f(x_1(t), x_2(t), u(t))]^T, \tag{7}$$

obtém-se a seguinte equação diferencial vetorial

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), u(t)), \quad t \ge 0 \tag{8}$$

As variáveis $x_1(t)$ e $x_2(t)$ são chamadas variáveis de estado e o vetor $\mathbf{x}(t)$, constitui o vetor de estados do sistema.

A equação vetorial (8) pode ser generalizada da seguinte maneira:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)), \quad t > 0 \tag{9}$$

onde $\mathbf{f}(t) = [f_1(t), f_2(t), \dots, f_n(t)]$ e

$$\dot{x}_i(t) = f_i(x_1(t), x_2(t), \dots, x_n(t), u_1(t), u_2(t), \dots, u_m(t)), \quad i = 1, 2, \dots, n$$
(10)

Note que a generalização (10) permite que cada variável de estado $x_i(t)$ seja função do vetor de variáveis de estado $\mathbf{x}(t) = [x_1(t), x_2(t), \dots, x_n(t)]^T$ e de um vetor de funções de entrada $\mathbf{u}(t) = [u_1(t), u_2(t), \dots, u_m(t)]^T$.

Este tipo de representação será utilizada na seqüência, no tratamento de sistemas não-lineares, para obtenção do equivalente linearizado. Os estados podem estar associados diretamente a saída y(t) e suas derivadas, e neste caso cada elemento do vetor $\mathbf{x}(t)$ tem interpretação física como posição, velocidade, etc.

2.1 Exemplos

2.1.1 Pêndulo Simples

Considere o movimento de um pêndulo sujeito a atrito, mostrado na Fig. 1. Seja M a massa da esfera, ℓ o comprimento do fio, g a aceleração da gravidade e B o coeficiente de atrito. A equação que descreve o movimento do pêndulo é

$$M\ell^2\ddot{\theta} + B\ell\dot{\theta} + Mg\ell\sin\theta = 0 \tag{11}$$

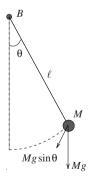


Figura 1: Pêndulo sujeito a atrito.

Exp. 4

e fazendo $x_1(t) = \theta(t)$ e $x_2(t) = \dot{\theta}(t)$, obtém-se então de (11),

$$\dot{x}_1(t) = x_2(t) \tag{12}$$

$$\dot{x}_2(t) = -b\sin x_1(t) - ax_2(t), \tag{13}$$

onde $b = g/\ell$ e $a = B/(\ell M)$.

2.1.2 Problema Predador-Presa

Numa determinada região e num dado instante de tempo t existe uma população $x_1(t)$ de coelhos (presas) que se alimenta da vegetação e uma população $x_2(t)$ de raposas (predadores) que se alimenta de coelhos. No intervalo de tempo Δt , a população de coelhos sofre um acréscimo na forma $ax_1(t)\Delta t$, a>0, devido a nascimentos e mortes naturais, e um decréscimo da forma $-cx_1(t)x_2(t)\Delta t$, c>0, devido a mortes provocadas por raposas, proporcional ao número de encontros entre coelhos e raposas. A variação $\Delta x_1(t)$ da população de coelhos é então dada por

$$\Delta x_1(t) = ax_1(t)\Delta t - cx_1(t)x_2(t)\Delta t \tag{14}$$

e no limite quando $\Delta t \rightarrow 0$, obtém-se

$$\dot{x}_1(t) = ax_1(t) - cx_1(t)x_2(t) \tag{15}$$

Assuma que na ausência de coelhos, a população de raposas é decrescente e que o crescimento do número de raposas é proporcional ao número de encontros com coelhos. A evolução temporal da população de raposas pode então ser descrita analogamente por

$$\dot{x}_2(t) = -bx_2(t) + dx_1(t)x_2(t) \tag{16}$$

onde b > 0 e d > 0. As equações (15) e (16) constituem o chamado *Modelo de Volterra* para interação entre espécies. As constantes a, b, c e d dependem de fatores ambientais e das características de reprodução de predadores e presas. A não-linearidade do modelo vem do produto $x_1(t)x_2(t)$.

2.1.3 Pêndulo Invertido

O pêndulo invertido com contrapeso que se encontra disponível no laboratório é esquematizado na Fig. 2.

O sistema consiste de uma haste pendular principal que oscila livremente, e que dá suporte a uma haste deslizante. A haste deslizante é acionada por um sistema de correia e polia. O ajuste do contrapeso permite deslocar o centro de massa do pêndulo, eventualmente localizando-o abaixo do pivot do pêndulo. Quando o centro de massa está localizado acima do pivot a haste deslizante deve ser acionada de forma a manter o equilíbrio do sistema.

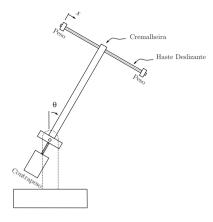


Figura 2: Pêndulo Invertido

Tabela 1: Componentes do Pêndulo

Parâmetro	Descrição	Valor
m_{w2}	Massa do Contrapeso	1 (kg)
ℓ_{w2}	Distância com sinal do centro de massa	Ajustável:
	do Contrapeso ao Pivot	-10,5 a -14 (cm)
m_{2o}	Massa da Haste Principal	0.785 (kg)
ℓ_{co}	Distância com sinal do centro de massa	
	da Haste Principal ao Pivot	0.071 (m)
m_{1o}	Massa da Haste Deslizante	0,103 (kg)
m_{w1}	Massa dos Pesos na Haste Deslizante	0.131 (kg)
ℓ_o	Distância com sinal da	
	Haste Deslizante ao Pivot	$0.330 \; (m)$
J_0^*	Momento de Inércia do Pêndulo	
	(sem haste deslizante e contrapeso)	$0.0246 \text{ (kg-m}^2\text{)}$

Os componentes do pêndulo com as grandezas físicas associadas estão descritos na Tabela 1. O movimento do pêndulo invertido é descrito pelas equações

$$J\ddot{x} - J^*x\dot{\theta}^2 - 2m_1\ell_o x\dot{x}\dot{\theta} + (m_2\ell_o\ell_c - \bar{J})g\mathrm{sen}\theta + m_1\ell_o gx\cos\theta = \frac{J^*}{m_1}F\tag{17}$$

$$\bar{J}\ddot{\theta} + 2m_1x\dot{x}\dot{\theta} + m_1\ell_ox\dot{\theta}^2 - m_2\ell_cgsen\theta - m_1gx\cos\theta = -\ell_oF \tag{18}$$

Exp. 4

e os parâmetros presentes nas equações (17) e (18) são expressos em termos dos parâmetros na Tabela 1 como

$$m_1 = m_{1o} + m_{w1} \tag{19}$$

$$m_2 = m_{2o} + m_{w2} \tag{20}$$

$$\ell_c = (m_{w2}\ell_{w2} + m_{2o}\ell_{co})/m_2 \tag{21}$$

$$\bar{J} = J_0^* + m_{w2} (\ell_{w2})^2 \tag{22}$$

$$J^* = J_0^* + m_1 \ell_0^2 + m_{w2} (\ell_{w2})^2 \tag{23}$$

A equação diferencial vetorial em (8) pode ser obtida, escolhendo-se para as variáveis do vetor de estado \mathbf{x} as variáveis $\mathbf{\theta}$, $\dot{\mathbf{\theta}}$, x e \dot{x} em ordem arbitrária. Por exemplo, adotando-se

$$x_1 = \theta$$

$$x_2 = \dot{\theta}$$

$$x_3 = x$$

$$x_4 = \dot{x}$$

as equações diferenciais (17) e (18) estabelecem a representação na forma de estado $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$ com

$$\dot{x}_{1} = \mathbf{f}_{1}(\mathbf{x}, \mathbf{u}) = x_{2}
\dot{x}_{2} = \mathbf{f}_{2}(\mathbf{x}, \mathbf{u}) = \frac{-1}{\bar{J}} \left(2m_{1}x_{2}x_{3}x_{4} + m_{1}\ell_{o}x_{2}^{2}x_{3} - m_{2}\ell_{c}g \operatorname{sen}x_{1} - m_{1}gx_{3} \cos x_{1} + \ell_{o}\mathbf{u} \right)
\dot{x}_{3} = \mathbf{f}_{3}(\mathbf{x}, \mathbf{u}) = x_{4}
\dot{x}_{4} = \mathbf{f}_{4}(\mathbf{x}, \mathbf{u}) = \frac{1}{\bar{J}} \left(J^{*}x_{2}^{2}x_{3} + 2m_{1}\ell_{o}x_{2}x_{3}x_{4} - (m_{2}\ell_{o}\ell_{c} - \bar{J})g \operatorname{sen}x_{1} \right)
- m_{1}\ell_{o}gx_{3} \cos x_{1} + \frac{J^{*}}{m_{1}}\mathbf{u} \right)$$

onde $\mathbf{u} = F$.

3 Sistemas Autônomos e Pontos de Equilíbrio

Considere um sistema dinâmico $aut\hat{o}nomo$ descrito por um conjunto de equações diferenciais do tipo

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)), \quad \mathbf{x}(t) \in \mathbb{R}^n$$
 (24)

Note que para um vetor de entrada $\mathbf{u}(t) \in \mathbb{R}^m$ dado, a equação (9) fica com a forma da equação (24).

Definição 1 (Ponto de Equilíbrio) Diz-se que um vetor $\mathbf{x}_e \in \mathbb{R}^n$ é um ponto de equilíbrio do sistema dinâmico autônomo

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)), \quad \mathbf{x}(t) \in \mathbb{R}^n \tag{25}$$

se $\mathbf{f}(\mathbf{x}_e) = \mathbf{0}$.

Da Definição 1 conclui-se que se \mathbf{x}_e é um ponto de equilíbrio de (25) e $\mathbf{x}(t)$ uma solução qualquer do sistema autônomo, então $\mathbf{x}(t_0) = \mathbf{x}_e$ em algum instante t_0 implica que $\mathbf{x}(t) = \mathbf{x}_e$, $\forall t \geq t_0$. Com relação aos Exemplos 1 e 2, observe que

- 1. Os pontos de equilíbrio do movimento do pêndulo são dados por $(n\pi,0)$, onde $n=0,\pm 1,\pm 2,\ldots$;
- 2. Os pontos de equilíbrio do Modelo de Volterra são (0,0) e $(\frac{b}{d},\frac{a}{c}).$

4 Sistemas de 2a. Ordem Autônomos: Plano de Estado/Fase

Um sistema de 2a. ordem autônomo é representado por duas equações diferenciais

$$\dot{x}_1(t) = f_1(x_1(t), x_2(t)) \tag{26}$$

$$\dot{x}_2(t) = f_2(x_1(t), x_2(t)) \tag{27}$$

O Plano de Estado é o plano bidimensional com eixo horizontal x_1 e eixo vertical x_2 . Suponha que $[x_1(t) \ x_2(t)]$, $t \ge 0$ é uma solução do sistema. O gráfico de $x_1(t)$ versus $x_2(t)$ para $t \ge 0$ é chamado de trajetória no plano de estado do sistema. No caso particular em que o sistema de 2a. ordem é representado pelas equações

$$\dot{x}_1(t) = x_2(t) \tag{28}$$

$$\dot{x}_2(t) = f(x_1(t), x_2(t)) \tag{29}$$

o plano $x_1 \times x_2$ é chamado de *Plano de Fase*. A Fig. 3 mostra uma trajetória no plano de estado começando no estado (x_{10}, x_{20}) em $t = t_0$ e passando por (x_{1f}, x_{2f}) em $t = t_f$.

5 Algumas Noções de Estabilidade

A teoria de controle indica que a estabilidade é uma das mais importantes propriedades de um sistema dinâmico. Considere um sistema que se encontra num ponto de equilíbrio e suponha que ocorra um desvio do sistema em relação à posição de equilíbrio, provavelmente devido a uma perturbação.

Exp. 4

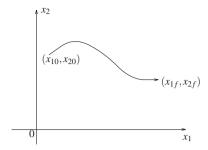


Figura 3: Trajetória no Plano de Fase.

O ponto de equilíbrio é estável se o sistema não se afasta muito deste ponto para pequenos desvios ocorridos em determinado instante de tempo t_0 . Além disso, é necessário que os desvios para $t \geq t_0$ sejam arbitrariamente pequenos, ao se fazer com que o desvio em $t=t_0$ seja arbitrariamente pequeno. Este conceito é ilustrado através do movimento de uma massa esférica S sobre uma determinada superfície, quando S está sujeita apenas à ação da gravidade. As três configurações da Fig. 4 mostram a esfera em diversas posições de equilíbrio.

No caso da situação (a), a massa oscilará permanentemente em torno de sua posição de equilíbrio se for deslocada desta posição e não houver atrito. A amplitude da oscilação dependerá do deslocamento inicial e pode ser feita arbitrariamente pequena se o deslocamento inicial for também arbitrariamente pequeno. Na situação (b), a massa se encontra sobre um plano horizontal. Se a massa for deslocada, a nova posição será também um ponto de equilíbrio e a massa permanecerá nesta nova posição. Nas situações (a) e (b), os pontos de equilíbrio correspondentes são estáveis. O comportamento do sistema referente à situação (c) é inteiramente diferente. Por menor que seja o deslocamento realizado, a esfera S se moverá para longe do ponto de equilíbrio. Diz-se neste caso que o ponto de equilíbrio é instável.

Considere agora a existência de atrito. Se na situação (a) a massa sofre um pequeno deslocamento de seu ponto de equilíbrio, então obtém-se uma oscilação amortecida e a esfera retorna à sua posição de equilíbrio. Diz-se neste caso que o ponto de equilíbrio é assintoticamente estável. Na situação (b), a massa não retorna à sua posição de equilíbrio ao ser deslocada e, portanto, o ponto de equilíbrio não é assintoticamente estável. Em aplicações de controle de sistemas, estabilidade assintótica é quase sempre requerida.

Ao se introduzir os conceitos de estabilidade e de estabilidade assintótica, assume-se que existe uma pequena região em torno do ponto de equilíbrio na qual estes conceitos são válidos. Considere por exemplo as situações mostradas na Fig. 5.

O ponto de equilíbrio da massa S é estável nos três casos (e assintoticamente estável, se existir atrito). No entanto, o deslocamento inicial permitido de forma a obter-se um movimento convergente para a posição de equilíbrio é muito menor na situação (a) do que na situação (b). Na situação (c), o movimento é convergente qualquer que seja o

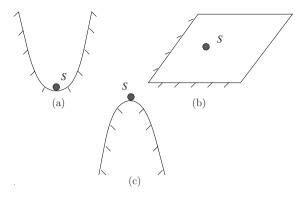


Figura 4: (a) Sistema Estável; (b) Sistema Estável; (c) Sistema Instável

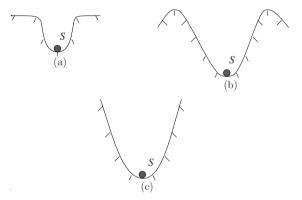


Figura 5: Domínios de Estabilidade

deslocamento inicial.

A discussão acima ilustra o conceito de domínio de estabilidade. Este conceito é fundamental em aplicações, pois não basta verificar se um ponto de equilíbrio é estável no sentido descrito anteriormente. É necessário analisar se o domínio de estabilidade é adequado às condições de operação do sistema.

Todos estes conceitos podem ser colocados matematicamente como segue. Seja \mathbf{x}_e um ponto de equilíbrio do sistema

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t)), \quad \mathbf{x}(t) \in \mathbb{R}^n$$
 (30)

Exp. 4

e seja ainda a norma de $\mathbf{x}(t)$, para t fixo, definida como

$$\|\mathbf{x}(t)\| = \sqrt{x_1^2(t) + x_2^2(t) + \dots + x_n^2(t)}$$

Definição 2 (Estabilidade) Diz-se que o ponto de equilíbrio \mathbf{x}_e é estável se para cada $\varepsilon > 0$, existe $\delta(\varepsilon) > 0$ tal que

$$\|\mathbf{x}(t_0) - \mathbf{x}_e\| < \delta(\varepsilon) \rightarrow \|\mathbf{x}(t) - \mathbf{x}_e\| < \varepsilon, \quad \forall t > t_0$$

Definição 3 (Estabilidade Assintótica) Diz-se que o ponto de equilíbrio \mathbf{x}_e é assintoticamente estável se é estável e

$$\lim \|\mathbf{x}(t) - \mathbf{x}_e\| \to 0$$

Observe que se a norma da diferença $\mathbf{x}(t) - \mathbf{x}_e$ está limitada por algum valor real ou tende a 0 quando $t \to \infty$, então o mesmo comportamento deve ser esperado de cada componente do vetor de estados. A Fig. 6 ilustra os conceitos de estabilidade para $\mathbf{x}_e = \mathbf{0}$. Observe que sempre é possível assumir que o vetor $\mathbf{0}$ é um ponto de equilíbrio de (30) transladando-se as coordenadas do sistema original de tal forma que o ponto de equilíbrio \mathbf{x}_e torne-se o vetor $\mathbf{0}$ no novo sistema de coordenadas. Especificamente, se \mathbf{x}_e é um ponto de equilíbrio de (30), então fazendo

$$\mathbf{z}(t) = \mathbf{x}(t) - \mathbf{x}_e$$

onde $\mathbf{x}(t)$ é solução de (30), obtém-se então

$$\dot{\mathbf{z}}(t) = \mathbf{f}(\mathbf{z}(t) + \mathbf{x}_e) \tag{31}$$

e portanto $\mathbf{z} = \mathbf{0}$ é um ponto de equilíbrio de (31).

6 Linearização

Esta seção trata da linearização de um sistema não-linear em torno de seus pontos de equilíbrio. O objetivo básico desta linearização é analisar o comportamento das trajetórias do sistema não-linear através do estudo do sistema linear resultante. Este método de análise é muito útil e é válido para uma grande classe de sistemas não-lineares.

Seja então o sistema autônomo de 2a. ordem

$$\dot{x}_1(t) = f_1(x_1(t), x_2(t)) \tag{32}$$

$$\dot{x}_2(t) = f_2(x_1(t), x_2(t)) \tag{33}$$

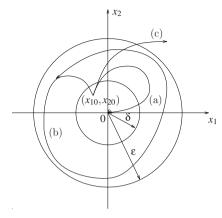


Figura 6: (a) Assintoticamente Estável; (b) Estável; (c) Instável

Suponha que $\mathbf{0} = (0,0)$ é um ponto de equilíbrio deste sistema e que f_1 e f_2 são diferenciáveis numa vizinhança de (0,0). Seja

$$a_{ij} = \frac{\partial f_i}{\partial x_j}, \quad i, j = 1, 2$$

Através da Série de Taylor é possível expandir f_1 e f_2 da seguinte maneira

$$f_1(x_1(t), x_2(t)) = f_1(0,0) + a_{11}x_1(t) + a_{12}x_2(t) + r_1(x_1(t), x_2(t))$$
(34)

$$= a_{11}x_1(t) + a_{12}x_2(t) + r_1(x_1(t), x_2(t))$$
(35)

$$f_2(x_1(t), x_2(t)) = a_{21}x_1(t) + a_{22}x_2(t) + r_2(x_1(t), x_2(t))$$
(36)

onde r_1 e r_2 são os termos de ordem superior das respectivas séries de Taylor. Associado ao sistema original, define-se o seguinte sistema linearizado

$$\dot{z}_1(t) = a_{11}z_1(t) + a_{12}z_2(t) \tag{37}$$

$$\dot{z}_2(t) = a_{21}z_1(t) + a_{22}z_2(t) \tag{38}$$

Note que (0,0) também é um ponto de equilíbrio do sistema linearizado, e as váriaveis z_1 e z_2 podem ser entendidas como variáveis de desvio, na forma $\mathbf{z}(t) = \mathbf{x}(t) - \mathbf{x}_e$ com $\mathbf{x}_e = (0,0)$.

O método da linearização é baseado no fato que na maioria dos casos, as trajetórias do sistema não-linear possuem, em uma vizinhança adequada do ponto de equilíbrio, as mesmas características qualitativas das trajetórias do sistema linearizado.

Exp. 4

7 Solução Periódica e Ciclo Limite

Alguns sistemas autônomos possuem soluções periódicas. Considere, por exemplo, o oscilador harmônico descrito pelas equações

$$\dot{x}_1(t) = x_2(t), \quad x_1(0) = x_{10}$$
 (39)

$$\dot{x}_2(t) = -x_1(t), \ x_2(0) = x_{20}$$
 (40)

A solução deste sistema é dada por

$$x_1(t) = \rho_0 \cos\left(-t + \phi_0\right) \tag{41}$$

$$x_2(t) = \rho_0 \sin\left(-t + \phi_0\right) \tag{42}$$

onde

$$\rho_0 = \sqrt{x_{10}^2 + x_{20}^2} \text{ e } \phi_0 = \arctan \frac{x_{20}}{x_{10}}$$

Note que a solução é periódica independentemente das condições iniciais. Observe também que a partir da solução obtida,

$$x_1^2(t) + x_2^2(t) = \rho_0^2, \quad \forall t$$

ou seja, as trajetórias no plano de estado são circunferências cujos raios dependem da condição inicial (x_{10}, x_{20}) . O plano de fase está inteiramente coberto por soluções periódicas no sentido de que dado um ponto arbitrário (x_1, x_2) , pode-se então encontrar uma solução periódica passando por (x_1, x_2) .

Considere agora o sistema de equações não-lineares

$$\dot{x}_1(t) = x_2(t) + \alpha x_1(t) (\beta^2 - x_1^2(t) - x_2^2(t)) \tag{43}$$

$$\dot{x}_2(t) = -x_1(t) + \alpha x_2(t)(\beta^2 - x_1^2(t) - x_2^2(t)) \tag{44}$$

Introduzindo coordenadas polares

$$\rho = \sqrt{x_1^2(t) + x_2^2(t)}$$
 e $\phi = \arctan \frac{x_2(t)}{x_1(t)}$

então o sistema anterior transforma-se em

$$\dot{\rho} = \alpha \rho (\beta^2 - \rho^2) \tag{45}$$

$$= -1$$
 (46)

Pode-se verificar que a solução de (45)-(46) é dada por

$$\rho = \frac{\beta}{\sqrt{1 + c_0 e^{-\beta^2 t}}} \tag{47}$$

$$\phi = \phi_0 - t \tag{48}$$

onde $c_0 = (\beta^2/\rho_0^2) - 1$. Note que o sistema (45)-(46) tem somente uma solução periódica, quando $\rho_0 = \beta$. Além disso, para $\rho_0 \neq \beta$, todas as soluções aproximam-se da solução periódica, quando $t \to \infty$. Este exemplo difere do exemplo do oscilador harmônico simples, na medida que a solução periódica no presente caso é isolada, isto é, existe uma vizinhança da mesma que não contém soluções periódicas.

Definição 4 (Ciclo Limite) Um ciclo limite é qualquer solução periódica de

$$\dot{x}_1(t) = f_1(x_1(t), x_2(t)) \tag{49}$$

$$\dot{x}_2(t) = f_2(x_1(t), x_2(t)) \tag{50}$$

Soluções periódicas estão sempre associadas a trajetórias fechadas do plano de estado.

7.1 Pêndulo Simples

Estudaremos o pêndulo simples com amortecimento devido ao atrito. O movimento de um pêndulo amortecido é descrito pelas equações (12)-(13), onde $b = g/\ell$ e $a = B/(\ell M)$. Os pontos de equilíbrio de (12)-(13) são dados por $(n\pi,0)$, $n = 0,\pm 1,\pm 2,...$ Linearizando em torno do ponto de equilíbrio (0,0), obtém-se o seguinte sistema linear

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -b & -a \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Se $x_1 = v$ então $x_2 = \dot{v}$ e portanto o sistema linear pode ser reescrito na forma

$$\ddot{\mathbf{y}} + a\dot{\mathbf{y}} + b\mathbf{y} = 0 \tag{51}$$

A equação característica é

$$\lambda^2 + a\lambda + b = 0$$

Seja $\Delta = a^2 - 4b$. A natureza das raízes da equação característica depende do valor que Δ assume (note que a > 0 e b > 0):

1. $\Delta > 0$: raízes reais negativas, com solução na forma

$$y(t) = k_1 \exp(\lambda_1 t) + k_2 \exp(\lambda_2 t); \tag{52}$$

2. $\Delta < 0$: raízes complexas com parte real negativa, com solução na forma

$$y(t) = \exp(\sigma t)[A\cos\omega t + B\sin\omega t] \tag{53}$$

Exp. 4

Em qualquer dos casos o ponto de equilíbrio será assintoticamente estável. De fato, observe que $\|\mathbf{x}(t)\| \to 0$ quando $t \to \infty$. Analogamente, é possível mostrar que os pontos de equilíbrio da forma $(n\pi,0)$, onde n é par, são da mesma natureza de (0,0). Considere agora os pontos de equilíbrio do tipo $(n\pi,0)$, n ímpar. Fazendo a translação

$$x_1(t) = n\pi + z_1(t) (54)$$

$$x_2(t) = z_2(t) \tag{55}$$

obtém-se de (12)-(13),

$$\dot{z}_1(t) = z_2(t) \tag{56}$$

$$\dot{z}_2(t) = b \sin z_1(t) - a z_2(t) \tag{57}$$

e a linearização de (12)-(13) em torno de (0,0) resulta em

$$\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ b & -a \end{bmatrix} \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix}$$

Para este sistema $\Delta = a^2 + 4b$, o que implica que uma raiz da equação característica será positiva. Portanto, em torno dos pontos de equilíbrio do tipo $(n\pi,0)$, n ímpar, a conclusão é que o sistema (12)-(13) é instável.

7.2 Problema Predador-Presa

O modelo matemático que descreve este problema, apresentado na Seção 2, é descrito por

$$\dot{x}_1(t) = ax_1(t) - cx_1(t)x_2(t) \tag{58}$$

$$\dot{x}_2(t) = -bx_2(t) + dx_1(t)x_2(t) \tag{59}$$

Considere o ponto de equilíbrio (0,0). Linearizando em torno deste ponto, obtém-se

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & -b \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Observe que surgem duas equações de 1a. ordem independentes:

$$\dot{x}_1(t) = ax_1(t) \tag{60}$$

$$\dot{x}_2(t) = -bx_2(t) \tag{61}$$

o que implica que a equação característica associada tem como raízes $\lambda_1=a>0$ e $\lambda_2=-b<0$. É fácil mostrar que neste caso o ponto de equilíbrio (0,0) é instável.

Considere agora o ponto de equilíbrio $(\frac{b}{d}, \frac{a}{c})$. Fazendo

$$x_1(t) = \frac{b}{d} + z_1(t) \tag{62}$$

$$x_2(t) = \frac{a}{c} + z_2(t)$$
 (63)

Exp. 4 15

obtém-se

$$\dot{z}_1(t) = -\frac{bc}{d}z_2(t) - cz_1(t)z_2(t)$$
 (64)

$$\dot{z}_2(t) = \frac{ad}{c}z_1(t) + dz_1(t)z_2(t) \tag{65}$$

e a linearização de (64)-(65) em torno de (0,0) resulta em

$$\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & -\frac{bc}{d} \\ \frac{ad}{c} & 0 \end{bmatrix} \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix}$$

A equação característica associada a este sistema tem a forma

$$\lambda^2 + ab = 0$$

que tem como solução $\lambda_{1,2}=\pm j\sqrt{ab}$. A parte real de λ é portanto nula e representa o caso limite entre estabilidade e instabilidade. Levando em conta que o sistema foi linearizado, concluí-se que a decisão sobre a estabilidade ou instabilidade do ponto de equilíbrio depende dos termos desprezados pela linearização. Entretanto, para este problema Predador-Presa, é possível determinar a equação das trajetórias. De (58)-(59), obtém-se

$$\frac{\mathbf{dx_2}}{\mathbf{dx_1}} = \frac{x_2(-b+dx_1)}{x_1(a-cx_2)}$$

onde dx_2 e dx_1 são os diferenciais de x_1 e x_2 , respectivamente. Separando as variáveis

$$\frac{a-cx_2}{x_2} \mathbf{dx_2} = \frac{-b+dx_1}{x_1} \mathbf{dx_1}$$

e integrando, vem

$$a \ln x_2 - cx_2 = -b \ln x_1 + dx_1 + C \tag{66}$$

onde C é uma constante de integração. A equação (66) não pode ser resolvida explicitamente para x_1 como função de x_2 ou vice-versa. Entretanto, o matemático italiano Volterra mostrou que para um valor fixo de C, o gráfico de (66) é uma curva fechada (ci-clo limite) que engloba o ponto de equilíbrio $(\frac{b}{d}, \frac{a}{c})$ (Fig. 7). Deste modo, as populações de predadores e presas têm variações cíclicas em torno deste ponto.

Referências

- [1] José C. Geromel, Álvaro G. B. Palhares, Análise Linear de Sistemas Dinâmicos: Teoria, Ensaios Práticos e Exercícios, Ed. Edgar Blücher, 2004.
- [2] M. Vidyasagar, Nonlinear Systems Analysis, Prentice-Hall, 1978.

Exp. 4

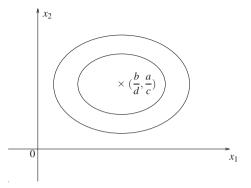


Figura 7: Análise do ponto de equilíbrio (b/d, a/c)

[3] W. E. Boyce, R. C. Diprima, Equações Diferenciais Elementares e Problemas de Valores de Contorno, Guanabara Dois, 1979.

Roteiro

Parte A - Exercícios para o Pêndulo Simples

A-1 Considere o movimento de um pêndulo não-amortecido descrito por

$$\ddot{\theta}(t) + a\sin\theta(t) = 0, \quad a = \frac{g}{\ell}$$

- a) Mostre que os pontos de equilíbrio são $(n\pi,0),\ n=0,\pm 1,\pm 2,\ldots;$
- b) Analise o sistema linearizado em torno do ponto de equilíbrio (0,0). Mostre que as trajetórias do sistema linearizado no Plano de Fase correspondem a elipses. Indique a direcão das trajetórias elípticas:
- c) Mostre que em torno do ponto de equilíbrio $(\pi,0)$ o sistema é instável.
- A-2 Considere o modelo não-linear do pêndulo não-amortecido. Simule o seu comportamento não-linear para $g/\ell=1$ e as seguintes condições iniciais:

	(a)	(b)	(c)	(d)
$\theta(0)$	0	0	0	π
$\dot{\theta}(0)$	$\frac{\pi}{10}$	$\frac{10\pi}{17}$	$-\frac{\pi^2}{5}$	0

Porque no caso (d) o pêndulo simulado mantém a condição inicial, mesmo sendo o ponto de equilíbrio $(\pi,0)$ instável? Aumente o tempo de simulação e verifique o que ocorre.

- A-3 Repita a simulação da parte A-2 para o modelo linearizado do pêndulo, considerando nos ítens a) e b) a linearização em torno do ponto (0,0), e nos itens c) e d) a linearização em torno do ponto $(\pi,0)$. Compare o comportamento dos sistemas não-linear e linearizado, medindo a freqüência de oscilação. Discuta a validade das linearizações.
- A-4 Supondo agora que o pêndulo esteja sujeito a um torque externo T aplicado ao pêndulo, a equação do movimento do pêndulo passa a ser:

$$\ddot{\theta}(t) + \frac{g}{\ell} \operatorname{sen} \theta(t) = \frac{T(t)}{m\ell^2}$$

Simule a situação quando T é uma entrada impulsiva, supondo as condições iniciais $\theta(0)$ e $\dot{\theta}(0)$ nulas, e supondo $m\ell^2=1$, nos seguintes casos:

a)
$$T_1(t) = \frac{\pi}{10}\delta(t)$$
, b) $T_2(t) = \frac{10\pi}{17}\delta(t)$, c) $T_3(t) = -\frac{\pi^2}{5}\delta(t)$.

Explique porque as respostas coincidem respectivamente, com as àquelas obtidas nos casos a), b) e c) em A-2.

Observação: No caso linear pode-se mostrar essa equivalência analiticamente utilizando a transformada de Laplace de uma função x(t)

$$\mathcal{L}\left\{\frac{dx^{n}}{d^{n}t}\right\} = s^{n}\mathcal{L}\left\{x\right\} - s^{n-1}x(0) - \dots - \left.\frac{dx^{n-1}}{d^{n-1}t}\right|_{x(0)}$$

- A-5 Utilizando as repostas temporais obtidas no item A-4, verifique se o Princípio de Superposição de Superposição para o pêndulo. Conclua sobre a validade ou não do Princípio de Superposição para sistemas não- lineares.
- A-6 Considere agora o modelo do pêndulo amortecido. Obtenha $\theta(t)$ por simulação tanto para o modelo não-linear como para o modelo linearizado em torno do ponto (0,0), supondo

$$\theta(0) = 0, \ \dot{\theta}(0) = \frac{\pi^2}{5}, \ \ell = 10 \text{m}, \ g = 10 \text{m/s}^2, \ M = 0,1 \text{kg e } B = 0,6 \text{ N.s}$$

Obtenha os Planos de Fase $\theta \times \dot{\theta}$ correspondentes aos dois modelos adotados. Compare e comente os resultados.

Parte B - Exercícios para o Modelo Predador-Presa

Exp. 4

B-1 Para pequenas variações em torno do ponto de equilíbrio $(\frac{b}{d}, \frac{a}{c})$ para o Modelo de Volterra, temos que a linearização indicada na Seção 7.2 é válida. Neste caso, as populações $x_1(t)$ e $x_2(t)$ são dadas por

$$x_1(t) = \frac{b}{d} + z_1(t)$$
 (67)
 $x_2(t) = \frac{a}{c} + z_2(t)$

a) Mostre que

$$z_1(t) = \frac{b}{d} k \cos(\sqrt{ab} t + \phi)$$

$$z_2(t) = \frac{\sqrt{ab}}{c} k \sin(\sqrt{ab} t + \phi)$$
(68)

Determine $k \in \Phi$ em função das condições iniciais $z_1(0) \in z_2(0)$;

- b) Mostre que as trajetórias de estado do sistema linearizado correspondem a elipses com centro em (b/d,a/c);
- c) Para o modelo linearizado:
 - c-1) O modelo linearizado permite tirar conclusões sobre a estabilidade assintótica do sistema não-linear original? E sobre a estabilidade?
 - c-2) Qual a defasagem entre as populações de predadores e presas ? Qual população está atrasada ?
 - c-3) Qual o período de oscilação das populações ? Este período depende das condições iniciais ? E no sistema original, o período de oscilação depende das condições iniciais?
 - c-4) As amplitudes de oscilação dependem das condições iniciais ?
- B-2 Considere o Modelo de Volterra para o problema Predador-Presa. Para a=1, $b=1,2,\ c=0.025,\ d=0.024,\ x_1(0)=20, x_2(0)=50,$ obtenha graficamente as respostas $x_1(t)\times t,\ x_2(t)\times t$ e $x_1(t)\times x_2(t)$ para um período de 30 anos.
- B-3 Varie as condições iniciais das duas populações, obtenha as respostas temporais e descreva o comportamento resultante das curvas de população. Reveja a resposta dada na parte B-1 ítem c-3, em vista do comportamento observado. Conclua comentando sobre os possíveis limites da análise baseada na linearização de sistemas.
- B-4 Suponha que um *Instituto Florestal* controla a abertura das temporadas de caça. Quando é melhor liberar a caça de raposas (predadores)? De coelhos (presas)? De raposas e coelhos? Nenhum dos dois?

¹Vide o Roteiro da Experiência 3.

Parte C - Simulação do Pêndulo Invertido

D-1 Faça a simulação do pêndulo invertido no SIMULINK/MATLAB utilizando as equações diferenciais não lineares em (17)-(18), relacionando os parâmetros nestas equações aos componentes do pêndulo através da Tabela 1 e das expressões (19), (20), (21), (22) e (23). Utilize $g=9.8~\mathrm{m/s^2}$ e tome inicialmente

 $\ell_{w2} = -14 \,\mathrm{cm}, \, x(0) = \dot{x}(0) = 0, \, F \equiv 0, \, \theta(0) = \frac{\pi}{8} \,\mathrm{e} \,\dot{\theta}(0) = 0$

O ponto de equilíbrio $x_e=\dot{x}_e=\theta_e=\dot{\theta}_e=0$ é estável com o contrapeso nessa posição? Explique.

- D-2 Suponha que a haste deslizante esteja centrada na haste principal do pêndulo e bloqueada. Para que esta situação ocorra, uma força externa deve ser aplicada de modo que $\ddot{x}(t)=0$ para todo t. Se isso ocorrer e $x(0)=\dot{x}(0)=0$, teremos $x(t)=\dot{x}(t)=0$ para todo t, como desejado. Verifique através da expressão (17) qual deve ser a força F para que isto ocorra. Introduza as modificações necessárias na simulação do item D-1, e proceda como indicado a seguir.
 - a) Varie a posição inicial $\theta(0)$ na forma te0=0.1:0.3:pi-.5 e observe como varia a frequência de oscilação,
 - b) Varie a posição do centro de massa variando ℓ_{w2} (centro de massa do contrapeso). Com $\theta(0) = \pi/8$, utilize os valores

Meça a freqüência de oscilação em cada caso simulado.

- c) Varie agora a posição do contrapeso, aproximando-o cada vez mais do pivot. Com centro de massa do contrapeso $\ell_{w2} > -0.15$ m observe o comportamento e determine através da simulação a posição ℓ_{w2} para a qual o ponto de equilibrio $x_e = \dot{x}_e = \dot{\theta}_e = \dot{\theta}_e = 0$ passa a ser instável.
- D-3 Considerando ainda como no item D-2, o pêndulo com a haste travada, mostre que a equação do movimento do pêndulo invertido nesse caso tem a seguinte forma:

$$\ddot{\theta} - \frac{m_2 \ell_c + m_1 \ell_0}{I^*} g \operatorname{sen} \theta = 0$$

Determine dessa equação:

- a) A freqüência de oscilação do pêndulo para pequenos valores do ângulo $\theta(t)$,
- b) Considere a freqüência $\omega = \sqrt{-g \cdot (m_2 \ell_c + m_1 \ell_0)/J^*}$ e plote a curva $\omega \times \ell_{w2}$ no intervalo $-1 \le \ell_{w2} \le -0.15$. Compare com o obtido por simulação na parte D-2 item (b).
- c) O que ocorre se $m_2\ell_c + m_1\ell_0$ for positivo?
- D-4 A curva $\omega \times \ell_{w2}$ obtida na parte D-3 item (b) seria semelhante à curva $\omega \times \ell$ para o pêndulo simples estudado na Parte A, quando variamos o comprimento ℓ daquele pêndulo? Explique.