

UNICAMP – Faculdade de Engenharia Elétrica e de Computação EA-619 Laboratório de Análise Linear

Experiência 5: Identificação de Parâmetros dos Equipamentos ECP: Resposta Temporal

14 de setembro de 2006

Sumário

1	Inti	rodução	2		
2	Modelo das Plantas Mecânicas ECP				
	2.1	Emulador Industrial	3		
	2.2	Sistema Retilíneo	5		
	2.3	Sistema Torcional	6		
	2.4	Pêndulo Invertido	7		
	2.5	Levitador Magnético	9		
		2.5.1 Modelo matemático não-linear do caso #1	10		
		2.5.2 Linearização do modelo	10		
3	Fun	nções de Transferência das Plantas Mecânicas	12		
	3.1	Diagramas de blocos	15		
4	Elementos de um Sistema ECP				
	4.1	Representação dos Sistemas ECP	20		
	4.2	Funções Auxiliares	22		
5	$\operatorname{Id}\epsilon$	entificação de Parâmetros dos Equipamentos ECP	22		
	5.1	Álgebra de Blocos para o Sistema com Realimentação	22		
	5.2	Identificação Experimental	23		
		5.2.1 Procedimento de identificação	24		
6	Procedimento Experimental: Emulador Industrial				
	6.1	Medida do momento de inércia do disco de atuação J_{dd}	28		
	6.2	Cálculo do ganho de hardware k_{hw}	29		
	6.3	Medida do coeficiente de atrito c_{dd} confirmação de J_{dd} e k_{hw}	29		

7	Pro	cedimento Experimental: sistema retilíneo	30
	7.1	Determinação das massas, molas e coeficientes de atrito	30
	7.2	Medida de k_{hw}	32
8	Pro	cedimento Experimental: sistema torcional	33
	8.1	Determinação das inércias, molas e coeficientes de atrito	34
	8.2	Medida de k_{hw}	36
9	Pro	cedimento Experimental: pêndulo invertido	36
	9.1	Identificação da haste deslizante	36
	9.2	Estimação do momento de inércia do pêndulo invertido	37
	9.3	Confirmação da massa da haste deslizante	40
	9.4	Confirmação do momento de inércia da haste principal	41
10	Pro	cedimento Experimental: levitador magnético	43
	10.1	Identificação do atuador não-linear	43
	10.2	Identificação do modelo linearizado por compensação	43
	10.3	Identificação do atuador não-linear	44
	10.4	Medidas do ganho do sistema k_{hw} e do coeficiente de atrito viscoso c_1	46

1 Introdução

O objetivo dessa experiência é descrever os elementos que compõem uma planta de bancada ECP, visando a obtenção de modelos dinâmicos apropriados para a descrição dos seus sub-sistemas. A planta mecânica é estudada a partir das equações diferenciais lineares ou linearizadas que descrevem o seu comportamento dinâmico. Também são analisados os aspectos funcionais dos demais módulos integrantes, descrevendo-se a finalidade de cada módulo no acionamento da planta mecânica, na obtenção de medidas das variáveis de posição, velocidade, na exibição dos dados, etc.

Representa-se cada elemento da planta através da função de transferência, obtida via transformada de Laplace. Este procedimento permite descrever de maneira homogênea todos os elementos do sistema, integrando-os na forma de diagrama de blocos. Nos casos em que a planta apresente elementos não-lineares, adotaremos o procedimento de linearização para se obter o diagrama de blocos correspondente.

Muitos sistemas físicos são adequadamente modelados através de equações diferenciais. Na modelagem, de início determinamos a forma mais apropriada de descrição do sistema, e adotamos um *modelo* descrito por equações diferenciais que seja apropriado ao sistema físico e ao mesmo tempo, leve em conta os propósitos do estudo. Os objetivos do

estudo é que irão, em última análise, determinar o grau de detalhamento e complexidade do modelo adotado, definindo a inclusão ou não de comportamentos secundários, e o uso das aproximações e simplificações. Essas considerações permitem estabelecer a classe de modelos adequada, definindo por exemplo a ordem das equações diferenciais envolvidas, se elas devem ser lineares ou não-lineares, etc. A partir dessa adequação, não faremos mais distinção entre o sistema original e o modelo adotado.

Numa segunda etapa, procuramos a determinação completa do modelo/sistema para a análise, e notamos que só uma classe geral de modelos não basta. É preciso *identificar* completamente o modelo/sistema, isto é, conhecer os valores dos parâmetros presentes no modelo adotado. O objetivo final desta experiência é a identificação dos parâmetros desconhecidos do modelo, utilizando a resposta temporal dos sistemas. As configurações utilizadas em todas as plantas dão origem a modelos lineares de 2a. ordem sub-amortecidos, cuja resposta temporal é caracterizada facilmente pela freqüência de oscilação, o decaimento logarítmico e o ganho do sistema. Aplicando-se tensão constante na entrada do sistema, que será feito em outro experimento, é possível avaliar os ganhos dos elementos de acionamento.

2 Modelo das Plantas Mecânicas ECP

Nesta seção apresenta-se o modelo de equações diferenciais para as cinco plantas mecânicas ECP existentes no laboratório. Serão adotados procedimentos de linearização dos modelos sempre que necessário.

Faz-se referência ao capítulo 5 do manual de cada equipamento que deve ser consultado para maiores detalhes sobre o comportamento dinâmico da planta correspondente.

2.1 Emulador Industrial

Dois tipos de modelos são discutidos no manual:

- Modelos rígidos as correias de transmissão são consideradas rígidas;
- Modelos flexíveis uma das correias de transmissão é flexível.

Faremos o desenvolvimento do modelo rígido, conforme a Fig. 1. Dessa figura podese mostrar que a razão entre as velocidades angulares

$$\theta_1 = g_r \theta_2$$

é dada pela relação

$$g_r = \frac{r_\ell r_{p1}}{r_{p2} r_d}$$

onde

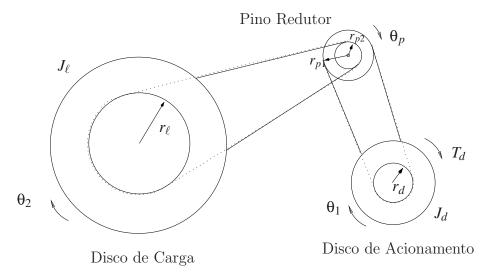


Figura 1: Modelo do Emulador Industrial: Planta Rígida.

 r_{ℓ} : raio (ou número de dentes) da polia do disco de carga;

 r_d : raio (ou número de dentes) da polia do disco de acionamento;

 r_{p1} : raio (ou número de dentes) da polia no pino redutor conectado ao disco de acionamento;

 r_{p2} : raio (ou número de dentes) da polia no pino redutor conectado ao disco de carga.

Considere também a relação

$$g_r' = \frac{r_{p1}}{r_d}$$

que refere-se à razão entre as velocidades do disco de acionamento e do pino redutor, isto é $\theta_1 = g'_r \theta_p$. Como a inércia refletida de um dado componente é proporcional ao quadrado da razão entre as velocidades, dado o momento de inércia da carga J_ℓ , essa inércia refletida para o disco de acionamento é

$$J_{\ell r} = \frac{J_{\ell}}{g_r^2}$$

Da mesma forma, a partir do momento de inércia do pino J_p , podemos definir

$$J_{pr} = \frac{J_p}{g_r^{\prime 2}}$$

A inércia total do sistema refletida para o disco de acionamento é expressa por

$$J_d^* = J_d + \frac{J_p}{(g_r')^2} + \frac{J_\ell}{(g_r)^2} \tag{1}$$

Admitindo-se a existência de atrito viscoso nos discos de acionamento e carga, com coeficientes c_1 e c_2 respectivamente, tem-se de forma similar que o coeficiente de atrito refletido para o disco de acionamento é

$$c_d^* = c_1 + \frac{c_2}{g_r^2}$$

Supondo-se que efeitos não-ideais como flexibilidade, folgas, atritos estáticos e outras não-linearidades são suficientemente pequenos, o sistema pode ser modelado como linear através das leis de Newton. A equação do movimento do sistema rígido é descrita pelas equações

$$\begin{cases} J_d^* \ddot{\theta}_1 + c_d^* \dot{\theta}_1 = T_d \\ \theta_2 = \frac{\theta_1}{g_r} \end{cases}$$
 (2)

2.2 Sistema Retilíneo

Dois tipos de modelos são discutidos no manual:

- Modelos com dois graus de liberdade (2 DOF) são obtidos mantendo-se travado ou desacoplando-se o terceiro carro;
- Modelos com três graus de liberdade (3 DOF) são obtidos considerando-se todos os três carros em movimento.

Faremos o desenvolvimento do modelo com dois graus de liberdade, conforme a Fig. 2.

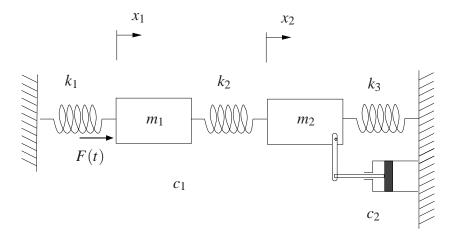


Figura 2: Modelo do Sistema Retilíneo com 2 DOF; c_1 atrito com o ar no carro #1; c_2 atrito com o ar e pistão no carro #2.

Admitindo-se a existência de atrito viscoso nos carrinhos e supondo que os efeitos provocados por não-linearidades neste sistema são suficientemente pequenos, o sistema pode ser modelado como linear através das leis de Newton para sistemas translacionais, conforme as equações

$$\begin{cases}
 m_1 \ddot{x}_1 + c_1 \dot{x}_1 + (k_1 + k_2) x_1 - k_2 x_2 = F(t) \\
 m_2 \ddot{x}_2 + c_2 \dot{x}_2 + (k_2 + k_3) x_2 - k_2 x_1 = 0
\end{cases}$$
(3)

onde

 x_1 : deslocamento linear do carro #1;

 x_2 : deslocamento linear do carro #2;

F(t): força aplicada ao carro #1;

 m_1, c_1 : massa e coeficiente de atrito viscoso do carro #1;

 m_2, c_2 : massa e coeficiente de atrito viscoso do carro #2;

 k_1 : constante da mola conectando o carro #1 e anteparo;

 k_2 : constante da mola conectando os carros #1 e #2;

 k_3 : constante da mola conectando o carro #2 e anteparo.

2.3 Sistema Torcional

Dois tipos de modelos são discutidos no manual:

- Modelos com dois graus de liberdade (2 DOF) são obtidos mantendo-se travado (clamped) o terceiro disco (configuração free-clamped 2 DOF) ou removendo-se o terceiro disco da planta (configuração free-free 2 DOF). No primeiro caso as constantes torcionais k_1 e k_2 estão presentes; no segundo caso, apenas k_1 ;
- Modelos com três graus de liberdade (3 DOF) são obtidos considerando-se os três discos e suas respectivas inércias.

Faremos o desenvolvimento do modelo com dois graus de liberdade, mantendo-se travado o terceiro disco conforme a Fig. 3 (o anteparo rígido representa o terceiro disco).

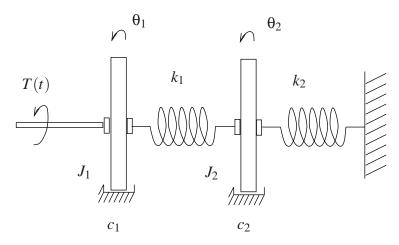


Figura 3: Modelo do Sistema Retilíneo com 2 DOF.

Admitindo-se a existência de atrito viscoso entre os discos e o ar, e supondo que os efeitos provocados por não-linearidades são suficientemente pequenos, o sistema pode ser modelado como linear através das leis de Newton para sistemas rotacionais, conforme as equações

$$\begin{cases} J_1 \ddot{\theta}_1 + c_1 \dot{\theta}_1 + k_1 (\theta_1 - \theta_2) = T(t) \\ J_2 \ddot{\theta}_2 + c_2 \dot{\theta}_1 + k_1 (\theta_2 - \theta_1) + k_2 \theta_2 = 0 \end{cases}$$
(4)

onde

 θ_1 : deslocamento angular do disco #1;

 θ_2 : deslocamento angular do disco #2;

T(t): torque aplicado ao disco #1;

 J_1, c_1 : momento de inércia e coeficiente de atrito viscoso do carro #1;

 J_2, c_2 : momento de inércia e coeficiente de atrito viscoso do carro #2;

 k_1 : constante da mola conectando os discos #1 e #2;

 k_2 : constante da mola conectando o disco#2e anteparo.

2.4 Pêndulo Invertido

Os modelos no Capítulo 5 do manual do equipamento referem-se a duas configurações determinadas através do posicionamento dos contrapesos com relação ao eixo do pivot.

Adotam-se contrapesos de massa de 1 kg, e através de um parafuso na base do eixo, ajusta-se a distância dos contrapesos ao eixo do pivot, alterando o centro de gravidade do conjunto. Duas configurações do sistema são de particular interesse, vide Fig. 4.

• Planta # 1 - os contrapesos são posicionados a 10 cm da base de pivoteamento $(\ell_t = 10 \text{ cm})$. Com isso, o centro de gravidade do conjunto localiza-se abaixo do eixo do pivot, e o comportamento resultante é de uma **planta estável**, isto é, o pêndulo retorna à posição de equilíbrio após pequenos deslocamentos angulares;

• Planta # 2 - os contrapesos são posicionados a 7 cm da base de pivoteamento $(\ell_t = 7 \text{ cm})$. Com isso, o centro de gravidade do conjunto localiza-se acima do pivot e o comportamento resultante é de uma **planta instável**, isto é, o pêndulo não retorna à posição de equilíbrio mesmo após deslocamentos angulares arbitrariamente pequenos.

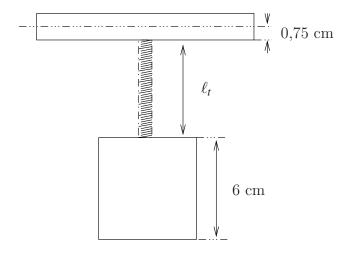


Figura 4: Ajuste dos Contrapesos do Pêndulo.

O pêndulo invertido foi apresentado na Experiência 4, seção 2.1.4. Os componentes do pêndulo com os valores numéricos são apresentados na Tabela 2 da Experiência 4, e as expressões (21)–(22) da mesma experiência apresentam as equações diferenciais que descrevem o movimento.

Como já visto, as equações (21)–(22) caracterizam um sistema intrinsecamente nãolinear, e linearizações em torno do ponto de equilíbrio $\theta_e = x_e = 0$ são necessárias para obter-se modelos lineares válidos. O modelo linearizado nesse ponto de equilíbrio é descrito pelas equações

$$\begin{cases} \bar{J}\ddot{x} + m_1\ell_o gx + (m_2\ell_o\ell_c - \bar{J})g\theta = \frac{J^*}{m_1}F(t) \\ \bar{J}\ddot{\theta} - m_1 gx - m_2\ell_c g\theta = -\ell_o F(t) \end{cases}$$
(5)

onde

$$m_1 = m_{1o} + m_{w1}$$

$$m_2 = m_{2o} + m_{w2}$$

$$\ell_c = (m_{w2}\ell_{w2} + m_{2o}\ell_{co})/m_2$$

$$\bar{J} = J_0^* + m_{w2}(\ell_{w2})^2$$

$$J^* = J_0^* + m_1\ell_o^2 + m_{w2}(\ell_{w2})^2$$

е

x: deslocamento linear da haste deslizante;

 θ : deslocamento angular da haste principal;

F(t): força aplicada à haste deslizante;

 m_{1o} : massa da haste deslizante;

 m_{w1} : massa dos pesos na haste deslizante;

 ℓ_o : distância com sinal da haste deslizante ao pivot;

 m_{w2} : massa do contrapeso;

 ℓ_{w2} : distância com sinal do centro de massa do contrapeso ao pivot (ajustável);

 m_{2o} : massa da haste principal;

 ℓ_{co} : distância com sinal do centro de massa da haste principal ao pivot;

 J_0^* : momento de inércia do pêndulo (sem a haste deslizante e contrapeso).

2.5 Levitador Magnético

Os modelos apresentados no capítulo 5 do manual do Levitador Magnético (equações 5.1-1 e 5.1-2) referem-se aos movimentos de dois magnetos montados na haste vertical de vidro. Nesta situação, quando as duas bobinas são submetidas a correntes elétricas ocorrem movimentos dos dois magnetos. Os seguintes casos particulares podem ser estudados:

- 1. Caso Monovariável (SISO) Somente o magneto #1 está presente na haste vertical de vidro e corrente presente somente na bobina #1 (inferior).
- 2. Caso Monovariável (SISO) Somente o magneto #2 está presente na haste vertical de vidro e corrente presente somente na bobina #2 (superior).
- 3. Caso Multivariável (MIMO) Os dois magnetos #1 e #2 estão presentes na haste vertical de vidro e há corrente presente nas duas bobinas.

Para os objetivos desta experiência vamos nos ater ao **caso monovariável (SISO)** #1.

2.5.1 Modelo matemático não-linear do caso #1

Conforme descrito na apostila da **Experiência 4**, o modelo que descreve o movimento do magneto #1, quando $F_{m12} \equiv F_{u21} \equiv 0$, é dado pela equação

$$m_1\ddot{y}_1(t) + c_1\dot{y}_1(t) = F_{u_{11}}(y_1, u_1) - m_1g$$

sendo:

 $y_1(t)$: deslocamento vertical do magneto #1 em relação à bobina inferior, na unidade [m];

 c_1 : coeficiente de atrito viscoso entre o magneto #1 e o ar, na unidade [N-s/m];

 $F_{u_{11}}(y_1,u_{11})$: a força mecânica gerada pela interação entre o campo magnético criado pela corrente na bobina #1 e o campo magnético permanente do magneto #1, na unidade [N].

Esta força é descrita por uma relação linear com a corrente da bobina u_{11} e não-linear com a distância $y_1(t)$ entre o magneto e a bobina, conforme a expressão

$$F_{u_{11}}(y_1, u_{11}) = \frac{u_1}{a(100y_1 + b)^4} \tag{6}$$

onde:

 u_1 : corrente na bobina #1;

a e b: coeficientes a serem determinados nesta experiência pelo método dos mínimos quadrados, a partir de valores medidos experimentalmente. O coeficiente 100 multicando y_1 faz a transformação deste valor de [m] para [cm].

Observação: Na equação (6) a variável y_1 refere-se ao deslocamento do magneto, medido diretamente no sistema físico. Entretanto, a medida deste deslocamento é feita através de um sensor óptico não-linear, cujo valor é informado ao software de controle na unidade *counts*, conforme a relação:

$$y_{1_{raw}}[counts] = f_s(y_1[cm]) \tag{7}$$

2.5.2 Linearização do modelo

Para a obtenção do modelo linearizado poderemos adotar as seguintes abordagens:

• Linearização por Série de Taylor: adota-se um ponto de operação (y_{1_0},u_{1_0}) e aproxima-se o sistema original por um modelo linear, conforme técnica desenvolvida na **Experiência 4**. Já sabemos que este método apresenta resultados satisfatórios somente numa região de pequenos desvios em torno do ponto de operação escolhido.

• Linearização por compensação das não-linearidades: adota-se a compensação tanto do sensor como do atuador através da estimação das funções inversas das não-linearidades correspondentes e faz-se a implementação no software de controle. Assim, conhecendo a função não-linear de transformação em (7), faremos

$$f_s^{-1}(f_s(y_1)) = y_1$$

obtendo-se a medida desejada.

A abordagem adotada nesta experiência é a da compensação pelas inversas, por existir o suporte de software para essa finalidade, e por ser de uso mais simples. O modelo resultante será utilizado também nas experiências subseqüentes.

Os diagramas de blocos abaixo ilustram a forma como estas compensações são implementadas por software.

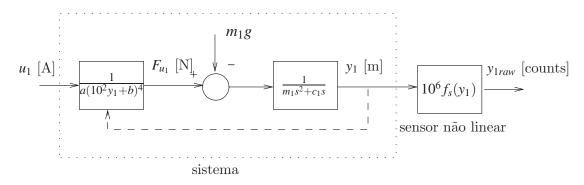


Figura 5: Modelo físico com o sensor.

a) Fig. 5: diagrama de blocos do modelo físico do servomecanismo eletro-magnético acoplado ao sensor de posição. Fornecimento ao software da altura y_1 , através de um sensor não-linear.

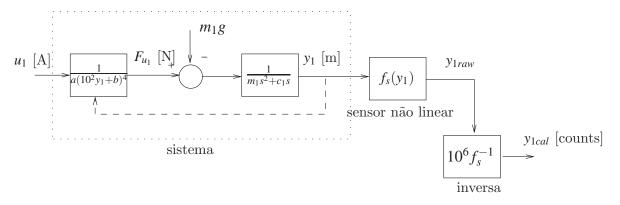


Figura 6: Compensação do medidor.

b) Fig. 6: diagrama anterior adicionado da compensação dinâmica realizada por software da não-linearidade do medidor. Recuperação do valor real do deslocamento y_1 através da estimação da função inversa do sensor. Nesta etapa o deslocamento $y_1[cm]$ é recuperado e transformado para a unidade padrão do ECP $y_{1_cal}[counts]$. A relação entre $y_{1_cal}[counts]$ e y_1 [cm] é tal que $y_{1_cal} = 10^4 y_1$.

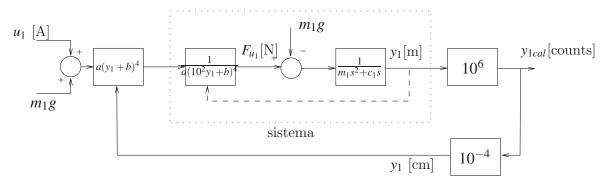


Figura 7: Compensação da força peso e da força não-linear do atuador.

c) Fig. 7: diagrama anterior adicionado da compensação dinâmica realizada por software da não-linearidade do atuador.

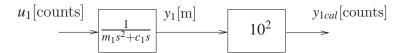


Figura 8: Diagrama final para o Levitador Magnético.

d) Fig. 8: diagrama equivalente final que será utilizado para o caso SISO #1.

Na seqüência, apresenta-se o conceito de função de transferência de um sistema dinâmico linear, e introduz-se a representação por diagrama de blocos. Desenvolve-se a álgebra dos blocos para algumas situações, obtendo-se representações simplificadas da relação entre as variáveis de entrada e de saída.

3 Funções de Transferência das Plantas Mecânicas

O uso de funções de transferência é intrínseco ao estudo de sistemas dinâmicos representados na forma entrada-saída. Seja um sistema físico modelado de acordo com a equação diferencial linear a coeficientes constantes - sistema linear invariante no tempo, ou SLIT - de ordem n,

$$\frac{d^{n}y(t)}{dt^{n}} + a_{n-1}\frac{d^{n-1}y(t)}{dt^{n-1}} + \dots + a_{0}y(t) =
= c_{m}\frac{d^{m}u(t)}{dt^{m}} + c_{m-1}\frac{d^{m-1}u(t)}{dt^{m-1}} + \dots + c_{0}u(t),$$
(8)

onde u(t) representa uma entrada independente - variável de controle - ey(t) a variável objeto de estudo - variável de saída. A partir do conhecimento das condições iniciais do sistema e da entrada u(t), o comportamento de y(t) pode ser determinado resolvendo-se (8). A transformada de Laplace pode ser usada para resolver (8), mas sua importância para a área de sistemas de controle está ligada ao conceito de função de transferência. Tomando-se a transformada de Laplace de (8) com condições iniciais nulas obtém-se, após simplificações,

$$(s^{n} + a_{n-1}s^{n-1} + \dots + a_0)Y(s) = (c_{m}s^{m} + c_{m-1}s^{m-1} + \dots + c_0)U(s),$$

onde $s = \sigma + j\omega$ denota a frequência complexa. Define-se a razão entre a saída Y(s) e a entrada U(s) como a função de transferência do sistema modelado pela equação diferencial (8):

$$G(s) = \frac{Y(s)}{U(s)} = \frac{c_m s^m + c_{m-1} s^{m-1} + \dots + c_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}.$$
 (9)

A função de transferência (9) encontra-se na forma expandida. Outras representações úteis em sistemas de controle são a forma compacta

$$G(s) = \frac{Y(s)}{U(s)} = \frac{kN(s)}{D(s)},$$

onde k é o ganho da função e N(s) e D(s) são polinômios mônicos (coeficientes de maior grau iguais a 1), e a forma fatorada ou forma de zeros e pólos (raízes de N(s) e D(s), respectivamente)

$$G(s) = \frac{Y(s)}{U(s)} = \frac{k(s-z_1)(s-z_2)\cdots(s-z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)},$$

onde $z_1, z_2, ..., z_m$ e $p_1, p_2, ..., p_n$ são os zeros e pólos de G(s), isto é, as raízes de N(s) e D(s), respectivamente.

A função de transferência G(s) caracteriza completamente o sistema dinâmico, no sentido de que a partir de (9) pode-se chegar a (8) facilmente. A função de transferência é dependente apenas das características próprias do sistema e não da entrada ao qual está submetido. É claro que a saída do sistema depende da entrada: para qualquer entrada u(t) que possua transformada de Laplace, a transformada da saída será

$$Y(s) = G(s)U(s),$$

e a anti-transformada de Y(s) fornecerá y(t). A partir de G(s) pode-se estudar apenas o comportamento entrada-saída do sistema. A descrição interna do sistema torna-se inacessível quando o sistema é representado pela sua função de transferência.

Diz-se que uma função de transferência G(s) = kN(s)/D(s) é própria se o grau de N(s) é menor ou igual do que o grau de D(s), isto é, se $m \le n$. Uma função G(s) é estritamente própria se m < n. Qualquer sistema cuja saída não responda instantâneamente a uma variação na sua entrada pode ser modelado por uma função de transferência estritamente própria. Componentes elétricos presentes em alguns sistemas reagem rapidamente à entrada e podem ser modelados por funções de transferência próprias (m = n). Funções de transferência imprópias (m > n) não modelam sistemas fisicamente realizáveis.

Emulador Industrial De acordo com as equações (2), tem-se que

$$\frac{\theta_1(s)}{T_d(s)} = \frac{1}{s(J_d^* s + c_d^*)} \tag{10}$$

$$\frac{\theta_2(s)}{T_d(s)} = \frac{gr}{s(J_\ell^* s + c_\ell^*)} \tag{11}$$

Retilíneo Em vista das equações (3), tem-se que

$$\frac{x_1(s)}{F(s)} = \frac{m_2 s^2 + c_2 s + k_2 + k_3}{D_r(s)} \tag{12}$$

$$\frac{x_2(s)}{F(s)} = \frac{k_2}{D_r(s)} \tag{13}$$

onde

$$D_r(s) = m_1 m_2 s^4 + (c_1 m_2 + c_2 m_1) s^3 + [m_1 (k_2 + k_3) + m_2 (k_1 + k_2) + c_1 c_2] s^2 + [c_1 (k_2 + k_3) + c_2 (k_1 + k_2)] s + k_1 k_2 + k_1 k_3 + k_2 k_3$$
 (14)

Torcional Utilizando as equações (4), obtem-se as funções de transferência

$$\frac{\theta_1(s)}{T(s)} = \frac{J_2 s^2 + c_2 s + k_1 + k_2}{D_t(s)} \tag{15}$$

$$\frac{\Theta_2(s)}{T(s)} = \frac{k_1}{D_t(s)} \tag{16}$$

onde

$$D_t(s) = J_1 J_2 s^4 + (c_1 J_2 + c_2 J_1) s^3 + [J_1(k_1 + k_2) + J_2 k_1 + c_1 c_2] s^2 + [c_1(k_1 + k_2) + c_2 k_1] s + k_1 k_2$$
 (17)

Pêndulo Utilizando as equações linearizadas do pêndulo (5), obtem-se as funções de transferência

$$\frac{X(s)}{F(s)} = \frac{J^*}{m_1 J_s} \cdot \frac{s^2 - g(m_1 \ell_o + m_2 \ell_c)/J^*}{s^4 + [g(m_1 \ell_o - m_2 \ell_c)/J_s]s^2 - m_1 g^2/J_s}$$
(18)

$$\frac{\theta(s)}{F(s)} = -\frac{\ell_o}{J_s} \cdot \frac{s^2 - g/\ell_o}{s^4 + [g(m_1\ell_o - m_2\ell_c)/J_s]s^2 - m_1g^2/J_s}$$
(19)

onde

$$J_s := J^* - m_1 \ell_o^2$$

Levitador Magnético Utilizando as equações do levitador com as compensações nãolineares do medidor e do atuador para o sistema monovariável #1 conforme descrito na seção 2.5.2, obtem-se um sistema linear equivalente, cuja função de transferência é dada por:

$$\frac{Y_1(s)}{U(s)} = \frac{1}{m_1 s^2 + c_1 s}$$

onde u(t) [N] é a força aplicada, y_1 [m] é a posição do disco magnético com relação ao referencial escolhido, e c_1 é o atrito do disco com o ar.

3.1 Diagramas de blocos

Diagramas de blocos são descrições pictóricas de funções de transferência. Um sistema dinâmico mais complexo pode ser modelado através de funções de transferência que descrevam *subsistemas*: a saída de um subsistema serve de entrada para outro subsistema. Com o auxílio de um diagrama de blocos, pode-se visualizar rapidamente como diferentes subsistemas são interligados para representar um sistema mais geral.

Exemplo 2 - Motor DC controlado por armadura.

O diagrama de blocos deste sistema eletromecânico clássico (*Ogata*, pp. 142-146) é representado na figura abaixo.

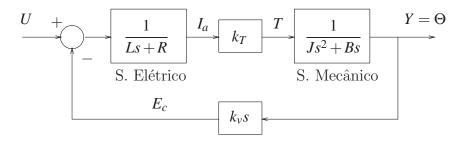


Figura 9: Diagrama de blocos do motor DC.

A partir do diagrama da Fig. 9, sabe-se que a tensão (variável) de entrada do motor, U(s), sofre inicialmente uma queda proporcional à velocidade de rotação do motor $(k_v s \Theta(s), força contra-eletromotriz)$. O subsistema elétrico é composto por um circuito RL série, cuja entrada é a diferença $U(s) - E_c(s)$ e cuja saída é a corrente de armadura $I_a(s)$. O torque produzido é proporcional à corrente de armadura $(T(s) = k_T I_a(s))$ e representa a entrada do subsistema mecânico composto por momento de inércia e atrito viscoso equivalentes (motor e carga), que por sua vez tem como saída o deslocamento angular do eixo do motor, $\Theta(s)$, definido como variável de saída do sistema eletromecânico. (Observe que a realimentação de velocidade presente no diagrama da figura 4 faz parte do modelo do motor e não é utilizada para definir U(s). O conceito de realimentação em sistemas de controle está ligado à definição de U(s) a partir de medidas de variáveis presentes no sistema.)

Um diagrama de blocos representa informações transmitidas num único sentido, isto é, a saída de um bloco responde às variações produzidas na sua entrada, mas variações na saída do bloco não afetam sua entrada pelo caminho inverso. Diagramas de blocos podem ser manipulados da mesma forma com que se manipulam equações algébricas. Para obter a função de transferência entre duas variáveis quaisquer do diagrama, eliminam-se sucessivamente todas as demais variáveis presentes no diagrama. As simplificações mais freqüentes estão ilustradas na figura 10.

Figura 10: Reduções de blocos em série e paralelo.

Exemplo 3 - Função de transferência do motor DC.

A partir das equivalências da Fig. 10, pode-se obter reduções do diagrama de blocos da Fig. 9 —Figs. 11 e 12 a seguir— até se chegar a função de transferência do motor DC controlado por armadura.

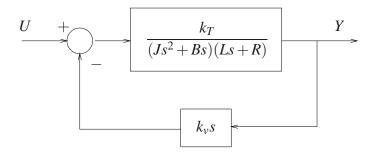


Figura 11: Redução dos blocos em série.

$$\frac{U}{JLs^3 + (LB + RJ)s^2 + (RB + k_v k_T)s} \qquad Y$$

Figura 12: Função de transferência do motor DC.

Observe que a função de transferência obtida não permite uma análise das variáveis internas do motor.

4 Elementos de um Sistema ECP

Retornamos aqui ao estudo das plantas de bancada ECP, concentrando-nos nos elementos adicionais à planta mecânica. Estes elementos tem a função de executar o acionamento

da planta, medir as variáveis físicas, fazer a aquisição e a exibição em tela dos dados disponíveis, executar ações de proteção ao equipamento, etc.

O diagrama esquemático de um sistema ECP completo é mostrado na Fig. 13.

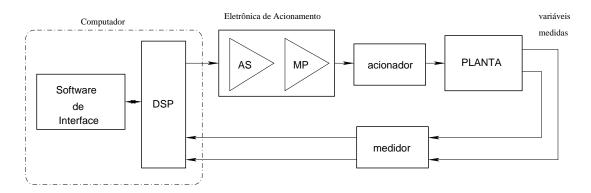


Figura 13: AS - Amplificador servo; MP - Módulo de Potência; DSP - Placa de Processamento e Conversão de Sinais.

Os medidores encoders são os elementos que fornecem a realimentação incremental das posições ou posições angulares (e suas derivadas), e essas informações são roteadas diretamente através da caixa de eletrônica de acionamento para a placa DSP. A placa DSP então conta os sinais de pulsos em uma base de tempo fixa, e determina em valores numéricos as variáveis de posição e velocidade. Ela conta com os conversores DA para a atuação sobre o dispositivo eletromecânico e recebe informação de outros sensores relativos a segurança do sistema.

A conversão dos pulsos em sinal digital e a de sinal digital em sinal analógico realizada pela placa DSP ocorre em freqüência suficientemente elevada, de forma que esses valores podem ser considerados como disponíveis num contínuo ao longo do tempo, isto é, ao adotar-se valores intermediários interpolados entre duas amostras subseqüentes, não se perde informação relevante. Essa forma de operação permite adotar-se a representação à tempo contínuo dos sistemas mecânicos (evitando a representação amostrada) e os modelos para a conversão de pulsos e a conversão DA são definidos por simples ganhos algébricos. Tem-se assim as seguintes funções de transferência para os elementos de conversão:

Encoder $G_e(s) = k_e$;

Ganho de Conversão de Pulsos $G_s(s) = k_s$;

Ganho do Conversor DA $G_c(s) = k_c$.

Os módulos da eletrônica de acionamento: amplificador servo e o módulo de potência são concebidos para fornecer a potência necessária ao acionamento do motor, aplicando de forma instantânea a tensão comandada (na saída do conversor DA) no motor. Sua função de transferência é dada por

Ganho do Amplificador Servo $G_{amp}(s) = k_{amp}$.

Em todas as plantas mecânicas, com exceção do levitador magnético, o acionamento é realizado por um motor DC sem escovas, conhecido também como motor síncrono de ímã permanente. Ele é capaz de fornecer torques elevados empregando um rotor de pequeno tamanho, utilizando ímãs construídos com terras raras, de alta densidade magnética. O campo é comutado eletronicamente e acionado através de um controlador proporcional integral (PI), o que permite obter uma resposta dinâmica muito rápida. Do ponto de vista da planta mecânica a resposta em torque do motor é essencialmente instantânea, e sua dinâmica pode ser ignorada; assim, adota-se

Ganho Estático do Motor $G_t(s) = k_t$

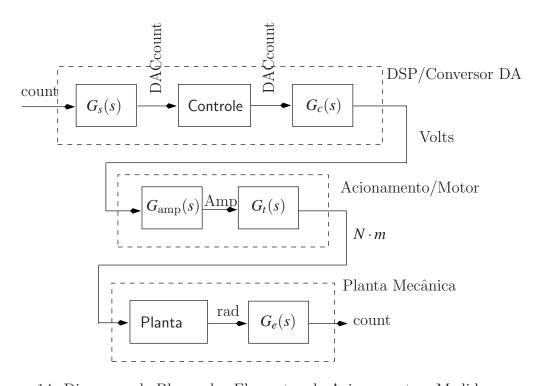


Figura 14: Diagrama de Blocos dos Elementos de Acionamento e Medida

O diagrama de blocos representando todos os elementos básicos desse sistema está mostrado na Fig. 14, onde se omitiu os detalhes da função de transferência da planta mecânica e do controle. A Planta Mecânica tem função de transferência específica, que irá depender da planta em consideração e da configuração adotada. Os parâmetros do bloco de Controle são determinados pelo projetista.

Internamente o sistema ECP utiliza-se de certas unidades conforme descrição a seguir. Fatores de conversão também são indicados.

Counts É a unidade utilizada pelos encoders, e corresponde ao número de ranhuras no disco ótico. Seu valor é $\frac{2\pi}{16.000}$ em radianos, ou $\frac{360}{16.000}$ em graus.

DACcounts É a unidade utilizada internamente na placa DSP e portanto, na entrada do conversor DA. O seu valor é $\frac{1}{32}$ counts ou $\frac{10}{32.768}$ Volts.

A tabela 1 apresenta a síntese dos elementos apresentados até aqui.

Tabela 1: Elementos de Ganho do Sistema.			
Elemento	Função de Transferência	Valor	
Encoder	$G_e(s) = k_e$	$\frac{16.000}{2\pi} \; (Count/Rad.)$	
Conversão de Pulsos	$G_s(s)=k_s$	32 (DACcount/Count)	
Conversor DA	$G_c(s) = k_c$	$\frac{10}{32.768} \; (Volt/DACcount)$	
Amplificador Servo Motor	$G_a(s) = k_{\text{amp}}$ $G_t = k_t$	★ (Ampère/Volt)★ (Newton-m/Ampère)	

^{*} Valores dependem da planta a ser considerada.

O motor e o amplificador apresentam pequenas variações de parâmetros nas diferentes montagens, e é preciso determinar as constantes $k_{\rm amp}$ e k_t experimentalmente. Na verdade o produto $k_{\rm amp}k_t$ já é suficiente para os nossos propósitos (porque?). Além desses, todos os demais parâmetros da Planta Mecânica deverão ser identificados.

Os sistemas Retilíneo e Torcional apresentam elementos extras de ganhos, além dos descritos na Figura 14 e na Tabela 1. Estes são devidos à conversão de movimento de translação em rotação, ou vice-versa, feito por polia no sistema retilíneo, ou conexão para redução de velocidade com correia e polias entre o motor e a planta no sistema torcional. Nessas duas plantas esses valores precisam ser levados em consideração, e as tabelas abaixo apresentam esses elementos extras.

Tabela 2: Ganhos adicionais para os sistemas Retilíneo e Torcional

Elemento	Função de Transferência	Valor
	Retilíneo	
Pinhão do Motor	$G_{mp}(s) = k_{mp}$	$26,25 \text{ (m}^{-1})$
Pinhão do Encoder	$G_{ep}(s) = k_{ep}$	$86 \; (\mathrm{m}^{-1})$
	Torcional	
Redutor de Velocidade	$G_p(s) = k_p$	3 (N-m disco / N-m motor)

No sistema torcional a relação de redução de velocidade entre o eixo do motor e o eixo do disco é de 3:1; portanto a relação entre o torque no eixo do motor e no eixo do disco de acionamento é $k_p = 3$.

Para o Pêndulo Invertido o fabricante declara alguns ganhos já agrupados:

Função de Transferência do grupo CDA/Amplificador/Motor/Roldana $G_f(s) = k_f$;

Ganho do encoder da haste deslizante $G_x(s) = k_x$;

Ganho do encoder da haste do pêndulo $G_a(s) = k_a$;

Os valores numéricos são dados na Tabela 3

Tabela 3: Ganhos para o Pêndulo Invertido

Elemento	Função de Transferência	Valor
Ganho combinado:	$G_f(s) = k_f$	0,0013 (N/DACcount)
CAD/Amplificador/Motor/Roldana	J J	,
Encoder da Haste Deslizante	$G_{x}(s)=k_{x}$	50.200 (Counts/m)
Encoder da Haste Principal	$G_a(s) = k_a$	2.546 (Counts/rad)
Conversão de Pulsos	$G_{s}(s)=k_{s}$	32 (DACcount/Counts)

4.1 Representação dos Sistemas ECP

Utilizando os dados da Tabela 3, a representação por diagrama de blocos do pêndulo invertido pode ser expressa como na Fig. 15.

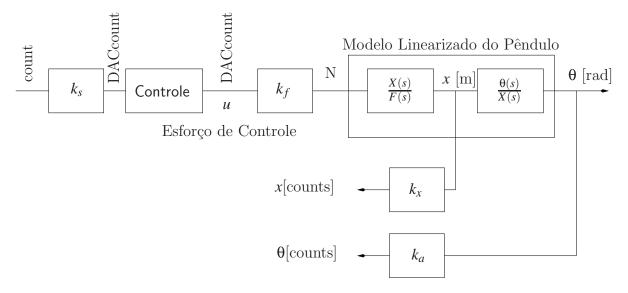


Figura 15: Diagrama de blocos para o Pêndulo.

Já os dados das Tabelas 1 e 2, permitem obter a representação para outras três plantas: emulador, retilíneo e torcional, como indicado na Fig. 16.

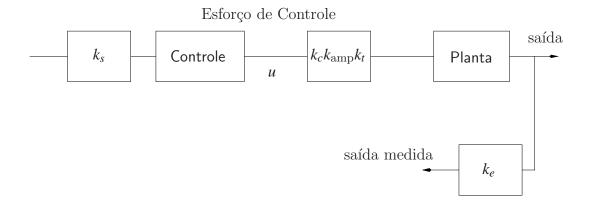


Figura 16: Diagrama de blocos para o Emulador Industrial; para os sistemas Retílineo e Torcional o bloco de ganhos após o bloco de controle compõe-se de elementos extras.

A representação apresentada na Fig. 16 pode ser simplificada mais ainda, definindose o parâmetro k_{hw} denominado ganho de hardware, de acordo com os produtos definidos na Tabela 4.

Tabela 4: Expressões do ganho de hardware k_{hw} .

Emulador	$k_{hw} = k_{s} \cdot k_{c} \cdot k_{amp} \cdot k_{t} \cdot k_{e}$	
Retilíneo	$k_{hw} = k_s \cdot k_c \cdot k_{amp} \cdot k_t \cdot k_{mp} \cdot k_e \cdot k_{ep}$	
Torcional	$k_{hw} = k_s \cdot k_c \cdot k_{amp} \cdot k_t \cdot k_p \cdot k_e$	
Levitador Magnético [†]	$k_{hw}=1$	
[†] Para o levitador $k_{hw} = 1$ [N/cm] = 100 [N/m]		

O esquema final de blocos para todos os sistemas, exceto o pêndulo, é mostrado na Fig. 17.

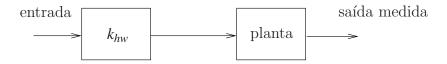


Figura 17: Diagrama final para as plantas, exceto Pêndulo Invertido.

Considere agora que a função de transferência da Planta Mecânica, $G_{\rm planta}(s)$ seja conhecida. O passo final para a representação do diagrama é dado quando se define

$$G_{\text{final}}(s) = k_{hw} \cdot G_{\text{planta}}(s)$$

Assim, $G_{\text{final}}(s)$ é uma única função de transferência que sintetiza a relação entre a Saída Medida (em unidade de Counts) e o Sinal de Referência ou Sinal de Entrada (em Counts).

4.2 Funções Auxiliares

A placa DSP é capaz de interpretar comandos de trajetórias e realizar verificações em variáveis com o objetivo de garantir a segurança na operação do equipamento. Esse sistema de hardware completo é representativo dentre os dispositivos de controle industrial modernos.

O elemento que compõe e finaliza todos os sistemas ECP é o programa executivo que roda no PC e dispõe de uma interface gráfica a base de menus, para facilitar o uso do sistema. Ele dá suporte à definição de trajetórias, aquisição de dados, visualização de curvas, especificação de controladores, execução de comandos do sistema, etc.

5 Identificação de Parâmetros dos Equipamentos ECP

O objetivo desta experiência é a identificação dos parâmetros desconhecidos do modelo, utilizando a resposta temporal de sistemas lineares de 2a. ordem. Medidas experimentais simples da resposta temporal permitem a identificação de parâmetros desconhecidos de sistemas lineares de 2a. ordem. Em geral os sistemas ECP são mais complexos e de ordem superior a dois, e para utilizarmos esse método isolaremos sub-sistemas de 2a. ordem.

Como a identificação envolve a execução de ensaios com a planta mecânica, é preciso levar em conta as grandezas físicas e internas utilizadas no hardware de apoio. As relações básicas de ganhos internos ou fatores de conversão entre medidas, apresentados na seção 4 desse roteiro, descritos na forma entrada/saída serão úteis nesta modelagem. O modelo em diagrama de blocos dos sistemas ECP lá desenvolvido é utilizado nesse estudo. A maior parte das relações presentes no hardware de apoio tem valores fixos, tais como ganhos do encoder, do conversor D/A. Outras porém, tem os valores dependentes da planta tais como os ganhos $k_{\rm amp}$ e k_t que relacionam tensão aplicada no motor de acionamento e torque de acionamento no eixo. Para estas últimas, é preciso realizar ensaios estáticos para obtenção dos valores exatos.

No caso do Emulador Industrial, Pêndulo Invertido e Levitador Magnético, é preciso introduzir controle por realimentação para a identificação de parâmetros, exigindo a representação equivalente em malha fechada do sistema com controle por realimentação. A idéia é criar uma força de regeneração que "simula" o efeito elástico de uma mola.

5.1 Álgebra de Blocos para o Sistema com Realimentação

Em algumas das plantas ECP será necessário utilizar controle por realimentação já nessa experiência, com o objetivo de identificar parâmetros. No controle por realimentação dáse acesso à medida da variável de saída ao elemento ou bloco de controle. Assume-se que a variável de saída é a que se deseja controlar, e o controle por realimentação permite atingir desempenho superior ao controle sem realimentação ou controle em malha aberta.

Uma estrutura básica de controle por realimentação é mostradas na Fig. 18

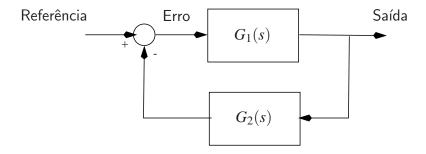


Figura 18: Diagrama de Blocos Simplificado

Denotando-se a Referência por r(t), o Erro por e(t) e a Saída por y(t), tem-se para o diagrama da Fig. 18 que as seguintes relações são válidas:

$$\begin{cases} Y(s) = G_1(s)E(s), \\ E(s) = R(s) - G_2(s)Y(s). \end{cases}$$

das quais deduz-se que a função de transferência em malha fechada entre r e y é dada por

$$\frac{Y(s)}{R(s)} = \frac{G_1}{1 + G_1 G_2} \tag{20}$$

Na próxima seção descreve-se como identificar os parâmetros do modelo de 2a. ordem a partir da resposta temporal do sistema. Particularidades para os casos do emulador industrial, pêndulo invertido e levitador magnético são apresentados nas seções 6, 9.1 e 10, respectivamente. O guia do procedimento experimental detalhado para cada planta ECP é apresentado nas seções de Procedimento Experimental.

5.2 Identificação Experimental

Para efeito de ilustração, considere o problema de controlar a posição angular de uma carga mecânica através de um motor DC controlado por armadura, conforme diagrama de blocos na Fig. 19.

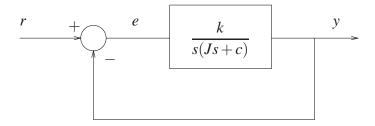


Figura 19: Sistema de controle em malha fechada.

A função de transferência de malha fechada do sistema é dada por

$$\frac{Y(s)}{R(s)} = \frac{k}{Js^2 + cs + k},$$

que também pode ser escrita na forma fatorada

$$\frac{Y(s)}{R(s)} = \frac{k/J}{\left[s + (c/2J) + \sqrt{(c/2J)^2 - (k/J)}\right] \left[s + (c/2J) - \sqrt{(c/2J)^2 - (k/J)}\right]}.$$

Os pólos de malha fechada serão complexos se $c^2 - 4Jk < 0$ e reais de $c^2 - 4Jk \ge 0$. Em estudos de resposta transitória é comum convencionar que

$$\frac{k}{J} = \omega_n^2, \quad \frac{c}{2J} = \xi \omega_n = \sigma, \tag{21}$$

onde σ é a atenuação, ω_n é a frequência natural não-amortecida e ξ é o fator de amortecimento introduzido pelos pólos de malha fechada. Observe que ξ pode ser expresso como

$$\xi = \frac{c}{2\sqrt{Jk}}.$$

Portanto, ξ é diretamente proporcional ao amortecimento natural do motor (c) e inversamente proporcional à inércia da carga e ao ganho do motor. A função de transferência de malha fechada da Fig. 19 pode ser então escrita na forma padrão, empregando os parâmetros ξ e ω_n

$$\frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}.$$

Como vimos, o comportamento dinâmico de qualquer sistema de 2a. ordem pode ser caracterizado pelos parâmetros ξ e ω_n ; se o fator de amortecimento é tal que $0 \le \xi < 1$, os pólos de malha fechada são complexos conjugados e situam-se no semi-plano esquerdo do plano complexo s. Diz-se que este tipo de sistema é sub-amortecido e a sua resposta transitória é oscilatória.

5.2.1 Procedimento de identificação

A técnica para identificação experimental de parâmetros físicos descrita a seguir baseiase na resposta transitória sub-amortecida de sistemas de 2a. ordem. Como ela pode ser completamente caracterizada através dos dois parâmetros, ξ e ω_n , e estes se relacionam de forma direta com os parâmetros físicos do sistema, podemos obter os parâmetros físicos indiretamente através de ensaios de resposta temporal. Os passos principais para obter ξ e ω_n experimentalmente são os seguintes:

1. Submete-se o sistema em malha fechada a uma entrada do tipo degrau unitário. Se o sistema for sub-amortecido, exibirá uma resposta oscilatória com frequência

$$\omega_d = \omega_n \sqrt{1 - \xi^2}$$

Mede-se a frequência ω_d . Se o sistema for pouco amortecido, pode-se aproximar $\omega_n \approx \omega_d$;

2. O cálculo de ξ baseia-se em medidas de amplitude dos sucessivos picos da resposta sub-amortecida, representada na Fig. 20.

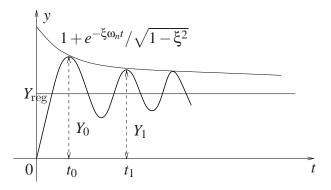


Figura 20: Cálculo do fator de amortecimento ξ.

Lembrando que a resposta ao degrau encontra-se limitada pelas envoltórias $1 \pm (e^{-\xi \omega_n t}/\sqrt{1-\xi^2})$, então a amplitude do primeiro pico é

$$Y_0 = Y_{\text{reg}} \left(1 + \frac{e^{-\xi \omega_n t_0}}{\sqrt{1 - \xi^2}} \right),$$

onde t_0 é o tempo em que ocorre o primeiro pico, de amplitude Y_0 . O n-ésimo pico ocorre no tempo t_n e fornece a amplitude

$$Y_n = Y_{\text{reg}} \left(1 + \frac{e^{-\xi \omega_n t_n}}{\sqrt{1 - \xi^2}} \right).$$

Definindo-se $X_0 = Y_0/Y_{\text{reg}} - 1$ e $X_n = Y_n/Y_{\text{reg}} - 1$, então

$$\frac{e^{-\xi\omega_n t_0}}{e^{-\xi\omega_n t_n}} = e^{\xi\omega_n (t_n - t_0)} = \frac{X_0}{X_n}.$$

Mas $t_n - t_0 = n \times t_d$, onde $t_d = \frac{1}{f_d} = \frac{2\pi}{\omega_d}$ é o período de oscilação forçada. Portanto,

$$e^{\xi\omega_n\left(rac{2\pi n}{\omega_d}
ight)} = e^{rac{\xi(2\pi n)}{\sqrt{1-\xi^2}}} = rac{X_0}{X_n}.$$

Tomando o logaritmo natural da expressão anterior caracteriza-se, finalmente, o decrescimento logarítmico de um sistema de 2a. ordem sub-amortecido:

$$\frac{\xi}{\sqrt{1-\xi^2}} = \frac{1}{2\pi n} \ln \frac{X_0}{X_n}.$$

A expressão acima permite determinar ξ , pois os parâmetros $X_0,\,X_n$ e n são conhecidos. Mais uma vez, se o amortecimento do sistema for pequeno, pode-se usar a aproximação

 $\xi \approx \frac{1}{2\pi n} \ln \frac{X_0}{X_n}.$

6 Procedimento Experimental: Emulador Industrial

Momento de inércia, ganho e atrito viscoso referentes ao emulador industrial (sistema rígido) podem ser identificados experimentalmente através de medidas realizadas sobre o sistema de controle em malha fechada da Fig. 21

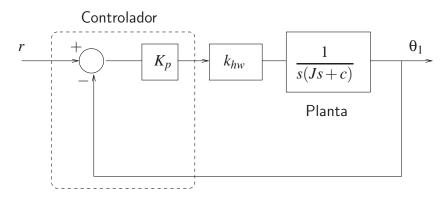


Figura 21: Controle em malha fechada do emulador industrial: controlador proporcional K_p .

Na Fig. 21 a malha é fechada através de um controlador proporcional. A função de transferência de malha fechada é

$$\frac{\Theta_1(s)}{R(s)} = \frac{K_p k_{hw}/J}{s^2 + cs/J + K_p k_{hw}/J}$$

que pode ser colocada na forma padrão

 $\frac{\Theta_1(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$

onde

 $\omega_n = \sqrt{\frac{K_p k_{hw}}{J}}$

е

$$\xi = \frac{1}{2\omega_n} \left(\frac{c}{J} \right)$$

O parâmetro k_{hw} é o ganho equivalente de hardware e é expresso na Tabela 4.

No modelo acima, a inércia J deve estar refletida para a posição da variável controlada. A seguinte notação é usada para representar a reflexão de inércias para o motor de atuação:

$$J_d^* = (J_{dd} + J_{d\ell} + J_{wd} + J_{w\ell} + J_p)_{\text{refletidas}}$$

onde

 J_{dd} : inércia do disco de atuação mais inércias do motor, encoder, engrenagem e correia do disco de atuação;

 $J_{d\ell}$: inércia do disco de carga mais inércias do motor de distúrbios, encoder, engrenagem e correia do disco de carga;

 J_{wd} : inércia associada aos pesos sobre o disco de atuação;

 $J_{w\ell}$: inércia associada aos pesos sobre o disco de carga;

 J_p : inércia associada às engrenagens do dispositivo SR.

A inércia total J_d^* refletida pode ser calculada conforme a expressão (1) na seção 2.1, identificando-se as inércias acima com aquelas em (1):

$$J_d = J_{dd} + J_{wd}, \quad J_\ell = J_{d\ell} + J_{w\ell}$$
 (22)

e as relações de velocidade

$$g_r = 6 \frac{n_{pd}}{n_{pl}}, \quad g_r' = \frac{n_{pd}}{12}$$
 (23)

onde n_{pd} e n_{pl} representam os números de dentes das engrenagens associadas aos discos de atuação e de carga, respectivamente, que se localizam no dispositivo SR. Observe que g_r dá a razão global entre as velocidades do disco de carga e do disco de atuação. Do mesmo modo, o coeficiente de atrito viscoso do disco de carga é refletido para o disco de atuação através do fator g_r^2 , vide a seção 2.1.

As inércias J_{wd} e $J_{w\ell}$ dependem da quantidade de pesos e das suas distâncias aos centros dos respectivos discos. Convém lembrar que o momento de inércia de uma massa de forma cilíndrica, girando na direção longitudinal em torno do seu centro de gravidade é $(1/2)mr^2$, onde m é a massa e r é o raio do cilíndro. O momento de inércia total da massa quando seu centro está localizado a uma distância d do centro de rotação é

$$J_w = md^2 + \frac{1}{2}mr^2 \tag{24}$$

Neste experimento faremos na primeira parte a determinação da inércia do disco de atuação e do ganho de hardware do emulador. Na segunda parte faremos a confirmação do valor de inércia medido e a determinação do atrito viscoso desse mesmo disco. Na parte final faremos a determinação da inércia do disco de carga, usando um procedimento semelhante ao da primeira parte. Guarde (salve) todos os gráficos utilizados nas medidas para inclusão no relatório.

6.1 Medida do momento de inércia do disco de atuação J_{dd}

1. Desligue o controlador e remova temporariamente a cobertura de acrílico do mecanismo. Coloque 4 pesos de 500[g] sobre o disco de atuação, a 4,5[cm] do centro. Recoloque a cobertura de acrílico antes de prosseguir para o próximo passo.

- 2. Com o controlador ligado, entre na caixa de diálogo Control Algorithm do menu Set-up e selecione Ts=0.002652s e Continuous Time Control.
- 3. Selecione no menu **Command** a opção **Trajectory**, desabilite movimento unidirecional e selecione **Step**, **Set up** e **Open Loop Step**. Defina a amplitude do degrau como 1[Volt], 2 repetições e duração de 300[ms]. Note que o degrau fica em 1[Volt] durante 150[ms], em 0[Volt] durante 150[ms], depois em -1[Volt] durante 150[ms], retornando finalmente a 0[Volt] durante os 150[ms] finais do ciclo.
- 4. Selecione **Zero Position** no menu **Utility** para zerar as posições dos encoders.
- 5. Selecione **Execute** no menu **Command** e então **Run**. O disco acelera num sentido. Em seguida, quando a entrada é nula, o disco desacelera devido ao atrito. Finalmente, quando a entrada é invertida, o disco também inverte a sua aceleração. Selecione Set-up Plot no menu **Plotting**, escolha **Encoder 1 Velocity** e então **Plot Data**. Deverão ser observadas inclinações lineares positiva e negativa correspondentes à velocidade do disco.
- 6. Meça cuidadosamente utilizando os recursos de (zoom) **Axis Scaling** do menu **Plotting**, as diferenças de tempo e velocidade referentes a uma seção linear da curva com inclinação positiva. Obtenha a aceleração dividindo a diferença de velocidade pela diferença de tempo. Repita o procedimento acima para uma seção linear da curva com inclinação negativa. Calcule a aceleração final $\ddot{\theta}_d$ como a média dos valores absolutos obtidos acima.
- 7. Desligue o controlador e remova temporariamente a cobertura acrílica do mecanismo. Remova os 4 pesos de 500[g] do disco de atuação. Recoloque a cobertura de acrílico antes de prosseguir para o próximo passo.
- 8. Repita os passos nos ítens de 2 a 6 acima sem os pesos, adotando-se agora a amplitude do degrau de 1[Volt], 2 repetições e duração de 100[ms].
- 9. Para o cálculo da inércia do disco considere que para baixo atrito viscoso, a aceleração do disco de atuação é definida pela equação $\mathbf{T} = \mathbf{J_d}(\ddot{\theta_d}/\mathbf{k_e})$. Denotando a aceleração do disco com pesos por $\ddot{\theta}_{d_c}/k_e$ e a do disco sem os pesos por $\ddot{\theta}_{d_s}/k_e$, podemos escrever as equações do movimento para os dois casos como

$$T = J_{dd}(\ddot{\theta}_{d_s}/k_e) = (J_{dd} + J_w)(\ddot{\theta}_{d_c}/k_e)$$

¹Note que o ganho do encoder k_e aparece nessa equação porque a medida de aceleração é feita na unidade [counts/ s^2].

Note que $J_w = 4m(d^2 + \frac{1}{2}r^2)$ (vide eq. (24)), com o raio r = 4.95/2 [cm] de cada peso de 500 [g]. Portanto, de posse dos valores $(\ddot{\theta}_{d_s}/k_e)$ e $(\ddot{\theta}_{d_c}/k_e)$, determine J_{dd} pela expressão

$$J_{dd} = \frac{J_w \ddot{\Theta}_{d_c}}{\ddot{\Theta}_{d_s} - \ddot{\Theta}_{d_c}}$$

6.2 Cálculo do ganho de hardware k_{hw}

Com as mesmas medidas feitas na seção anterior, o ganho de hardware pode agora ser calculado. Basta considerar a avaliação para o produto

$$k_{\text{amp}} \cdot k_t \cdot 1[\text{Volt}] = T = J_d \frac{\ddot{\theta}_d}{k_e},$$

onde $\ddot{\theta}_d$ é a aceleração medida em [counts/ s^2]. Assim,

$$k_e \cdot k_{\text{amp}} \cdot k_t \cdot 1[\text{Volt}] = J_d \ddot{\Theta}_d,$$

e da Tabela 4,

$$k_{hw} = k_s \cdot k_c \cdot k_e \cdot k_{amp} \cdot k_t = k_s \cdot k_c \cdot J_{dd} \ddot{\Theta}_{d_s} = k_s \cdot k_c \cdot (J_{dd} + J_w) \ddot{\Theta}_{d_c}$$

Então com as duas medidas do movimento com e sem os pesos teremos respectivamente dois valores k_{hw_c} e k_{hw_s} . Os valores de k_e , k_s e k_c encontram-se na Tabela 1. O valor desejado poderá ser obtido pela média entre k_{hw_c} e k_{hw_s} .

6.3 Medida do coeficiente de atrito c_{dd} confirmação de J_{dd} e k_{hw}

Nesta parte do experimento iremos utilizar um controle do tipo proporcional como detalhado na seção 6, para se obter uma resposta sub-amortecida do sistema em malha fechada.

- 1. Desligue o controlador e remova temporariamente a cobertura acrílica do mecanismo. Remova os 4 pesos de 500[g] do disco de atuação. Recoloque a cobertura de acrílico antes de prosseguir para o próximo passo.
- 2. Com o controlador agora ligado, entre na caixa de diálogo **Control Algorithm** do menu **Set-up** e selecione **Ts=0.002652s**, **Continuous Time Control**. Selecione **PID** e **Set-up Algorithm**. Entre com os valores $K_p = 0.03$ ($K_d = 0$ e $K_i = 0$) e selecione **OK**. Selecione **Implement Algorithm** e depois **OK**.
- 3. Selecione no menu **Command** a opção **Trajectory**, e escolha **Step** e **Closed Loop**. Defina a amplitude do degrau como 4000 counts e duração de 2500ms.
- 4. Selecione **Zero Position** no menu **Utility** para zerar as posições dos encoders.

5. Selecione **Execute** no menu **Command** e então **Run**. O disco oscilará em torno do degrau e então retornará. Os dados do encoder correspondentes a resposta sub-amortecida estão coletados. Selecione **OK** depois que os dados tenham sido carregados.

- Selecione Set-up Plot no menu Plotting e escolha Encoder # 1 Position.
 Selecione Plot Data. Deve-se observar uma resposta sub-amortecida do disco de atuação;
- 7. Meça a amplitude inicial Y_0 e amplitude Y_n após n ciclos. Para medidas mais precisas, pode-se ampliar a área de interesse do gráfico através da opção **Axis Scaling** do menu **Plotting**. Use o procedimento descrito na Seção 5.2 para obter ξ e ω_n . Observe que o valor de regime deve ser medido para o cálculo de X_0 e X_n .
- 8. Utilize as expressões de ξ e ω_n em função dos parâmetros J_{dd} , c_{dd} e k_{hw} para o emulador, dados na Seção 6 (em termos de J, c e k_{hw}). Determine o valor do coeficiente de atrito viscoso do disco de acionamento c_{dd} e verifique e comente a compatibilidade dos valores de k_{wh} e J_{dd} obtidos com essa medida e as medidas obtidas no ítens 6.1 e 6.2. Comente sobre a precisão dos resultados obtidos nos dois experimentos distintos com o disco de atuação.

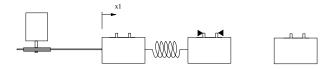
7 Procedimento Experimental: sistema retilíneo

Na primeira parte, alguns ensaios permitirão determinar a inércia , constante da mola e coeficiente de atrito viscoso. Na segunda parte do procedimento experimental serão realizadas algumas medidas visando identificar o ganho de hardware k_{hw} do sistema. Guarde (salve) todos os gráficos utilizados nas medidas para inclusão no relatório.

7.1 Determinação das massas, molas e coeficientes de atrito

As configurações a seguir utilizam pesos adicionais sobre os carros e portanto será necessário calcular certas massas equivalentes.

1. Com o controlador desligado, trave o segundo carro usando uma chave apropriada (vide figura abaixo). Certifique-se de que uma mola de dureza média (nominalmente 400 [N/m]) esteja conectando o primeiro e o segundo carros;



2. Fixe quatro massas de 500 [g] sobre o primeiro carro;

3. Com o controlador agora ligado, entre na caixa de diálogo Control Algorithm do menu Set-up e defina Ts=0.00442s. Entre no menu Command, vá para Trajectory e selecione Step, Setup. Selecione Open-Loop Step e defina um degrau com amplitude 0, duração 2000 ms e 1 repetição. Saia para a Background Screen, clicando sucessivamente OK. Agora a placa controladora está ajustada para adquirir 4 [s] de dados, mas sem ação do atuador. Este procedimento pode ser repetido para variar o período de aquisição de dados;

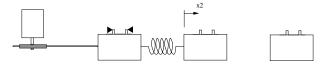
- 4. Selecione **OK** para sair. Selecione **Zero Position** no menu **Utility** para zerar as posições dos encoders;
- 5. Selecione **Execute** no menu **Command**. Prepare-se para deslocar manualmente o primeiro carro cerca de 2.5 [cm]. **Cuidado**: deslocamentos superiores poderão levar o software a atingir o limite a partir do qual o controlador é desabilitado, o que é indicado pela informação **Limit Exceeded** no **Controler Status** da tela de fundo do software (**Background Screen**). Para ativar novamente o controlador, selecione novamente **Execute** no menu **Command**. Com o primeiro carro deslocado de aproximadamente 2.5 [cm], selecione **Run** e libere o carro aproximadamente 1 [s] depois. A posição do carro oscilará enquanto que os dados dos encoders registram a resposta temporal. Selecione **OK** depois que os dados tenham sido carregados;
- 6. Selecione **Set-up Plot** no menu **Plotting** e escolha **Encoder** # 1. Selecione **Plot Data** no menu **Plotting**. Deve-se observar a resposta temporal do primeiro carro;
- 7. Escolha vários ciclos consecutivos numa faixa de amplitude entre 5500 e 1000 [counts]. Divida o número de ciclos pelo intervalo de tempo correspondente. Converta a frequência resultante de Hz para rad/s, obtendo-se assim a frequência de oscilação forçada, ω_d . A frequência natural ω_n pode ser aproximada por

$$\omega_{nm11} = \frac{\omega_{dm11}}{\sqrt{1 - \xi_{m11}^2}} \approx \omega_{dm11}$$
 (ξ_{m11} pequeno),

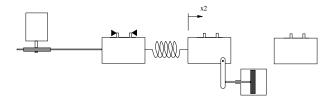
onde o sub-índice 'm11' significa que as quantidades são referentes ao carro 1 carregado;

- 8. Remova as quatro massas do primeiro carro e repita os passos de 5 a 7 para obter ω_{nm12} para o carro não-carregado. Se necessário, ajuste o passo 3 para reduzir a duração da execução;
- 9. Meça a redução da amplitude X_0 do ciclo inicial para a amplitude X_n do último ciclo, medidas no passo 8. Calcule o fator de amortecimento ξ_{m12} através da expressão para decrescimento logarítmico derivada na Seção 5.2;
- 10. Travar o primeiro carro e soltar o segundo. Repita os passos de 5 a 9 para o segundo carro. No passo 6 será necessário remover **Encoder # 1 Position** e adicionar

Encoder # 2 Position no menu Set-up Plot. Obtém-se então ω_{nm21} , ω_{nm22} e ξ_{m22} . Compare os fatores de amortecimento dos carros 1 e 2;



11. Trave o primeiro carro e conecte o pistão do amortecedor ao segundo carro (veja figura abaixo). Gire a válvula para ajuste de amortecimento do pistão cerca de 2 voltas completas a partir da posição completamente fechada. Repita os passos 5, 6 e 9 com 4 massas de 500 [g] sobre o segundo carro, usando amplitudes maiores ou iguais a 500 [counts] para o cálculo do fator de amortecimento. Obtenha então ξ_d , onde o sub-índice 'd' refere-se ao amortecimento produzido pelo pistão (dashpot);



12. Cada peso possui uma massa de 500 ± 10 [g]. Denotando por m_w o peso combinado das 4 massas, justifique e use as seguintes relações para obter a massa m_{c2} do segundo carro quando não-carregado, e a constante de mola k:

$$\omega_{nm21}^2 = \frac{k}{m_w + m_{c2}}, \quad \omega_{nm22}^2 = \frac{k}{m_{c2}}.$$

Encontre o coeficiente de atrito viscoso c_{m2} igualando os termos de primeira ordem da equação

$$s^{2} + 2\xi \omega_{n} s + \omega_{n}^{2} = s^{2} + \frac{c}{m} s + \frac{k}{m}.$$

Repita os cálculos acima para o primeiro carro, obtendo m_{c1} , c_{m1} e k, respectivamente. Calcule o coeficiente de amortecimento do pistão, c_d .

Observe que todos os parâmetros dinâmicos foram identificados.

7.2 Medida de k_{hw}

1. Desligue o controlador. Remova a mola entre o primeiro e o segundo carro. Coloque quatro massas de 500[g] no primeiro carro;

2. Com o controlador ligado, entre na caixa de diálogo do menu Set-up e defina Ts=0.00442s. Entre no menu Command vá para Trajectory, habilite movimento bidirecional e selecione Step, Set up. Selecione Open Loop Step, e defina a amplitude do degrau como 2,0[Volt], duração de 75[ms] e 2 repetições;

- 3. Posicione o carro #1 aproximadamente 3[cm] a esquerda do centro de excursão. Selecione **Zero Position** no menu **Utility** para zerar as posições dos encoders; selecione **Execute** no menu **Command** e pressione **Run**. O carro #1 acelera para a frente e retorna;
- 4. Selecione **Set-up Plot** no menu **Plotting**, escolha **Encoder 1 Velocity** e então **Plot Data**. Deverão ser observadas as inclinações lineares positiva e negativa correspondentes à velocidade do carro;
- 5. Meça cuidadosamente as diferenças de tempo e velocidade referentes a uma seção linear da curva com inclinação positiva. Use a opção **Scaling** no menu **Plotting** para ampliar a região do ponto a ser lido. Obtenha a aceleração dividindo a diferença de velocidade pela diferença de tempo. Repita o procedimento acima para uma seção linear da curva com inclinação negativa. Calcule a aceleração final como a média dos valores absolutos obtidos neste procedimento;
- 6. Para baixo atrito viscoso a aceleração do carro #1 é dada pela equação $\mathbf{F} = \mathbf{m_1}\ddot{\mathbf{x}_1}/\mathbf{k_e}\mathbf{k_{ep}}$, onde m_1 é a massa total no carro. Considerando os ganhos do amplificador de potência $(k_{\rm amp})$, ganho do servo motor (k_t) , e a relação de transmissão entre o motor e a cremalheira (k_{mp}) , a força F é dada por $F = k_{\rm amp}k_tk_{mp} \times (2,0 \text{ [Volt]})$. Da Tabela 4, pode-se então determinar o ganho de hardware (k_{hw}) como a seguir

$$k_{hw} = k_s \cdot k_c \cdot k_e \cdot k_{mp} \cdot k_{ep} \cdot k_{amp} \cdot k_t = k_s \cdot k_c \cdot k_e \cdot k_{ep} \cdot \frac{m_1 \ddot{x}_1}{2k_e k_{ep}}$$

sendo os ganhos k_c , k_e , k_s dados na Tabela 1, e k_{mp} e k_{ep} dados na Tabela 2.

7. Faça uma simulação do modelo obtido para o carro #1 (carro #2 travado), e compare com as curvas correspondentes obtidas experimentalmente. Explique brevemente qual foi o objetivo do experimento e que passos foram seguidos para atingi-lo. Discuta as aproximações adotadas no procedimento experimental de identificação.

8 Procedimento Experimental: sistema torcional

Na primeira parte, alguns ensaios permitirão determinar as inércias, as constantes da mola e coeficientes de atrito viscoso. Na segunda parte do procedimento experimental serão realizadas algumas medidas visando identificar o ganho de hardware k_{hw} do sistema. Guarde (salve) todos os gráficos utilizados nas medidas para inclusão no relatório.

²Note que o ganho do encoder k_e e da roldana k_{ep} aparecem nessa expressão porque a medida de aceleração é feita na unidade [counts].

8.1 Determinação das inércias, molas e coeficientes de atrito

As configurações a seguir utilizam pesos adicionais sobre os discos e portanto é necessário calcular certas inércias equivalentes. Convém lembrar que o momento de inércia de uma massa de forma cilíndrica, girando na direção longitudinal em torno do seu centro de gravidade é $(1/2)mr^2$, onde m é a massa e r é o raio do cilíndro. O momento de inércia total da massa quando seu centro está localizado a uma distância d do centro de rotação é

$$J_w = md^2 + \frac{1}{2}mr^2.$$

- 1. Com o controlador desligado, fixe quatro massas de 500 [g] nos discos superior e inferior. Os pesos devem ser fixados a d = 9,0 [cm] dos centros dos respectivos discos, e os pesos têm o raio r = 4,95/2 [cm];
- 2. Trave o disco central do sistema. Utilize um espaçador e chaves apropriadas;
- 3. Com o controlador agora ligado, entre na caixa de diálogo Control Algorithm do menu Set-up e defina Ts=0.00442s. Entre no menu Command, vá para Trajectory e selecione Step, Setup. Selecione Open-Loop Step e defina um degrau com amplitude 0, duração 4000 ms e 1 repetição. Saia para a Background Screen, clicando sucessivamente OK. Agora a placa controladora está ajustada para adquirir 8 [s] de dados, mas sem ação do atuador. Este procedimento pode ser repetido para variar o período de aquisição de dados;
- 4. Vá para Set-up Data Acquisition no menu Data e selecione Encoder #1 e Encoder #3 como variáveis a adquirir, e especifique uma amostragem a cada 2 ciclos. Selecione Zero Position no menu Utility para zerar as posições dos encoders;
- 5. Selecione **Execute** no menu **Command**. Prepare-se para deslocar manualmente o disco superior de cerca de 10° [graus]. **Cuidado**: deslocamentos acima de 40° podem danificar e possivelmente quebrar o eixo do mecanismo. Deslocamentos acima de 25° poderão levar o software a atingir o limite a partir do qual o controlador é desabilitado, o que é indicado pela informação **Limit Exceeded** no **Controller Status** da tela de fundo do software (**Background Screen**). Para ativar novamente o controlador, selecione novamente **Execute** no menu **Command**. Com o disco superior deslocado de aproximadamente 10 [graus] (≤ 500 [counts]), selecione **Run** e libere o disco aproximadamente 1 [s] depois. O disco oscilará com baixo amortecimento enquanto que os dados do encoder registram a resposta temporal. Selecione **OK** depois que os dados tenham sido carregados;
- 6. Selecione **Set-up Plot** no menu **Plotting** e escolha **Encoder** # 3. Selecione **Plot Data** no menu **Plotting**. Deve-se observar a resposta temporal do disco superior;

7. Escolha vários ciclos consecutivos numa faixa de amplitude entre 100 e 500 [counts]. Divida o número de ciclos pelo intervalo de tempo correspondente. Converta a frequência resultante de Hz para rad/s, obtendo-se assim a frequência de oscilação forçada, ω_d . A frequência natural ω_n pode ser aproximada por

$$\omega_{nd31} = \frac{\omega_{dd31}}{\sqrt{1 - \xi_{d31}^2}} \approx \omega_{dd31}$$
 (ξ_{d31} pequeno),

onde o sub-índice 'd31' significa que as quantidades são referentes ao disco 3 (superior) carregado;

- 8. Remova as quatro massas do disco superior e repita os passos de 5 a 7 para obter ω_{nd32} para o disco não-carregado. Se necessário, ajuste o passo 3 para reduzir a duração da execução;
- 9. Meça a redução da amplitude X_0 do ciclo inicial para a amplitude X_n do último ciclo, medidas no passo 8. Calcule o fator de amortecimento ξ_{d32} através da expressão para decrescimento logarítmico derivada na Seção 5.2;
- 10. Repita os passos de 5 a 9 para o disco inferior. No passo 6 será necessário remover **Encoder # 3 Position** e adicionar **Encoder # 1 Position** no menu **Set-up Plot**. Obtém-se então ω_{dd11} , ω_{nd12} e ξ_{d12} . Compare os fatores de amortecimento dos discos inferior e superior;
- 11. Use a seguinte informação para calcular a parcela da inércia de cada peso sobre o respectivo disco nos casos 'd31' e 'd11': massa (incluindo parafuso e porca)=500 [g] (± 5 [g]); diâmetro=4,95 [cm] (± 0.02 [cm]);
- 12. Denotando por J_m a inércia combinada das 4 massas, isto é $J_m = 4J_w$, justifique e use as seguintes relações para obter a inércia J_{d3} do disco superior quando não-carregado, e a constante de mola torcional k_{d3} :

$$\omega_{nd31}^2 = \frac{k_{d3}}{J_m + J_{d3}}, \quad \omega_{nd32}^2 = \frac{k_{d3}}{J_{d3}}.$$

Encontre o coeficiente de atrito viscoso c_{d3} igualando os termos de primeira ordem da equação

$$s^2 + 2\xi \omega_n s + \omega_n^2 = s^2 + \frac{c}{J}s + \frac{k}{J}.$$

Repita os cálculos acima para o disco inferior não-carregado (que inclui inércias refletidas do motor, correia e engrenagens), obtendo J_{d1} , c_{d1} e k_{d1} , respectivamente.

Observe que todos os parâmetros dinâmicos foram identificados.

8.2 Medida de k_{hw}

1. Desligue o controlador e configure o sistema removendo os discos superiores, mantendo o disco inferior. Fixe quatro massas de 500[g] a 9,0 [cm] do centro do disco;

- 2. Com o controlador ligado, entre na caixa de diálogo do menu **Trajectory**, habilite movimento bidirecional e selecione **Step**, **Set up**. Selecione **Open Loop Step**, e defina a amplitude do degrau como 1,0[Volt], duração de 500[ms] e 2 repetições. Selecione **Zero Position** no menu **Utility** para zerar as posições dos encoders;
- 3. Selecione Execute no menu Command e pressione Run. O disco acelera para a frente e retorna. Selecione Set-up Plot no menu Plotting, escolha Encoder 1 Velocity e então Plot Data. Deverão ser observadas as inclinações lineares positiva e negativa correspondentes à velocidade do disco;
- 4. Meça cuidadosamente as diferenças de tempo e velocidade referentes a uma seção linear da curva com inclinação positiva. Obtenha a aceleração dividindo a diferença de velocidade pela diferença de tempo. Repita o procedimento para uma seção linear da curva com inclinação negativa. Calcule a aceleração final como a média dos valores absolutos obtidos neste procedimento;
- 5. Para baixo atrito viscoso a aceleração do disco #1 é dada na forma $\mathbf{T} = \mathbf{J}\ddot{\boldsymbol{\theta}}/\mathbf{ke}$, onde J é a inércia total do disco. Considerando o ganho do amplificador de potência $(k_{\rm amp})$, o ganho do servo motor (k_t) , e a relação de transmissão entre o motor e o disco (k_p) , o torque T é dado por $T = k_{\rm amp}k_tk_p \times (1,0 \text{ [Volt]})$. Da Tabela 4, pode-se então determinar o ganho de hardware (k_{hw}) como a seguir

$$k_{hw} = k_s \cdot k_c \cdot k_e \cdot k_{amp} \cdot k_t \cdot k_p = k_s \cdot k_c \cdot k_e \cdot \frac{J\ddot{\Theta}_1}{k_e}$$

sendo os ganhos k_s , k_c , k_e dados na Tabela 1, e k_p na Tabela 2.

6. Faça uma simulação do modelo obtido para o disco #1 (disco #2 travado), e compare com as curvas correspondentes obtidas experimentalmente. Explique brevemente qual foi o objetivo do experimento e que passos foram seguidos para atingi-lo. Discuta as aproximações adotadas no procedimento experimental de identificação.

9 Procedimento Experimental: pêndulo invertido

9.1 Identificação da haste deslizante

Considere o diagrama de blocos do pêndulo apresentado na Fig. 15. Iremos adotar um controle em malha fechada para a posição da haste x, que se utiliza da medida da

 $^{^3 \}rm Note$ que o ganho do encoder k_e aparece nessa expressão porque a medida de aceleração é feita na unidade [counts].

própria posição da haste deslizante. Note que os ganhos k_s , k_f e k_x serão incorporados ao controle.

Deseja-se determinar a massa da haste deslizante m_1 e o coeficiente de atrito viscoso c_1 , a partir da resposta ao degrau do sistema de controle em malha fechada, conforme mostrado na Fig. 22.

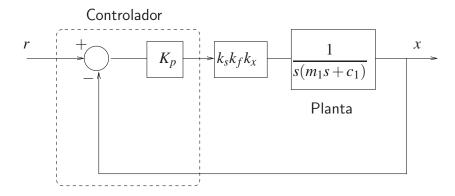


Figura 22: Controle em malha fechada da haste do pêndulo: controlador proporcional K_p .

Nesta figura a malha é fechada por realimentação unitária, gerando-se um sinal de erro. O sinal de controle será proporcional a este erro. A função de transferência de malha fechada é então obtida na forma

$$\frac{X(s)}{R(s)} = \frac{K_p k_s k_f k_x / m_1}{s^2 + c_1 s / m_1 + K_p k_s k_f k_x / m_1}$$
(25)

que pode ser colocada na forma padrão

$$\frac{X(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$$
 (26)

donde deduzimos que,

$$\omega_n = \sqrt{\frac{K_p k_s k_f k_x}{m_1}}, \quad \xi = \frac{1}{2\omega_n} (\frac{c_1}{m_1})$$
(27)

Comparando-se as equações (25) e (26) fica evidente que medindo-se o valor de ξ a partir do **over-shoot** na resposta ao degrau ou ao impulso, e medindo-se a freqüência amortecida ω_d , podemos determinar os parâmetros m_1 e c_1 , dado que o valor do produto dos ganhos $k_s k_f k_x$ é conhecido a priori.

9.2 Estimação do momento de inércia do pêndulo invertido

Nesta seção será apresentada uma técnica para estimação do momento de inércia do pêndulo invertido. Uma aproximação geralmente utilizada para o cálculo do momento de inércia total do pêndulo é dada pela expressão a seguir:

$$J^* = J_0^* + m_1 \ell_0^2 + m_{w2} \ell_{w2}^2 \tag{28}$$

onde assume-se que a massa da haste deslizante e a massa do contrapeso estão concentradas em seus centros de massa.

No desenvolvimento a seguir, assume-se por um lado que são conhecidas (ou de fácil medida) as massas do contrapeso (m_{w2}) e da haste deslizante (m_1) , e as respectivas distâncias (ℓ_{w2}) e (ℓ_0) de seus centros de massa ao pivô principal do pêndulo. Por outro lado, assume-se que são desconhecidos a massa da haste principal, seu centro de massa e seu momento de inércia.

A estratégia de identificação do momento de inércia da haste principal do pêndulo (J_0^*) consiste em realizar duas medidas da frequência de oscilação do pêndulo (com a haste deslizante travada) com diferentes posicionamentos para o contra-peso. Como se verá a seguir, estas medidas são suficientes para a obtenção de uma estimativa do momento de inércia da haste principal.

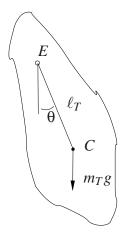


Figura 23: Pêndulo físico com massa m_T . E eixo do pivô, C centro de massa.

Inicialmente, considere-se o pêndulo físico (oscilação planar de um sólido em torno de um eixo fixo) mostrado na Fig. 23. A equação clássica do movimento já linearizada, portanto válida para pequenos deslocamentos do ângulo θ é dada por

$$J\ddot{\theta} - gm_T \ell_T \theta = 0 \tag{29}$$

onde:

J: momento de inércia do sólido em relação ao eixo de oscilação;

 m_T : massa total do sólido;

 ℓ_T : distância com sinal do centro de massa do sólido ao eixo de oscilação;

g: aceleração da gravidade.

A frequência de oscilação é dada por:

$$\omega_n = \sqrt{-\frac{gm_T\ell_T}{J}} \tag{30}$$

donde:

$$-m_T \ell_T = \frac{J\omega_n^2}{g} \tag{31}$$

Suponha-se agora que sejam realizadas medidas da frequência de oscilação do pêndulo para duas configurações diferentes, de modo que para cada configuração seja utilizado um valor diferente para a variável ℓ_{w2} (distância do centro de massa do contrapeso ao pivô). É imediato concluir que em cada caso o pêndulo apresentará um momento de inércia total distinto. Sejam:

 ℓ_1 : valor utilizado para o parâmetro ℓ_{w2} correspondente à primeira configuração;

 J_1 : inércia total do pêndulo correspondente à primeira configuração;

ω₁: frequência angular medida para a primeira configuração;

 ℓ_2 : valor utilizado para o parâmetro ℓ_{w2} correspondente à segunda configuração;

 J_2 : a inércia total do pêndulo correspondente à segunda configuração;

 ω_2 : frequência angular medida para a segunda configuração.

A partir da equação (28) é possível escrever as seguintes equações:

$$J_1 = J_a + m_{w2}\ell_1^2 \tag{32}$$

$$J_2 = J_a + m_{w2}\ell_2^2 \tag{33}$$

onde:

$$J_a = J_0^* + m_1 \ell_0^2 \tag{34}$$

O momento de inércia J_a corresponde ao conjunto formado pela haste principal e pela haste deslizante.

Sejam m_a a massa do conjunto formado pela haste principal e pela haste deslizante e ℓ_a a distância do centro de massa deste mesmo conjunto ao pivô do pêndulo. O centro de massa do pêndulo, cuja distância ao pivô é ℓ_T pode ser obtido a partir da fórmula clássica para o centro de massa:

$$m_T \ell_T = m_a \ell_a + m_{w2} \ell_{w2} \tag{35}$$

Substituindo-se a equação (31) na equação anterior para os dois conjuntos de medidas (com pequenos deslocamentos), obtém-se:

$$-\frac{J_1 \omega_1^2}{g} = m_a \ell_a + m_{w2} \ell_1 \tag{36}$$

$$-\frac{J_2\omega_2^2}{g} = m_a\ell_a + m_{w2}\ell_2 \tag{37}$$

Substituindo-se as expressões (32) e (33) para J_1 e J_2 respectivamente nas equações (36) e (37), obtém-se um par de equações que permite eliminar o produto $m_a\ell_a$ e calcular o valor de J_a . Feitas as substituições, o resultado é:

$$J_a = m_{w2} \frac{\ell_2^2 \omega_2^2 - \ell_1^2 \omega_1^2 + g\ell_2 - g\ell_1}{\omega_1^2 - \omega_2^2}$$
(38)

Finalmente, utilizando-se a definição do momento J_a (equação 34) e a equação anterior obtém-se o momento de inércia da haste principal J_0^* como

$$J_0^* = m_{w2} \frac{\ell_2^2 \omega_2^2 - \ell_1^2 \omega_1^2 + g\ell_2 - g\ell_1}{\omega_1^2 - \omega_2^2} - m_1 \ell_0^2$$
(39)

Nesse experimento faremos a confirmação da massa da haste deslizante, utilizando um controlador proporcional para essa haste e realizando ensaios. Na segunda parte trava-se a haste deslizante e executa-se movimentos com o pêndulo, afim de confirmarmos o momento de inércia da haste principal do pêndulo. Guarde (salve) todos os gráficos utilizados nas medidas para inclusão no relatório.

9.3 Confirmação da massa da haste deslizante

Nesta parte do experimento iremos utilizar um controle do tipo proporcional como detalhado na seção 9.1, para se obter uma resposta sub-amortecida do sistema em malha fechada.

- 1. Desligue o controlador e remova os dois pesos "orelha"da haste deslizante. Trave a haste principal do pêndulo utilizando um calço ajustado ao contrapeso, e ajuste a haste deslizante colocando-a na posição central.
- 2. Com o controlador agora ligado, entre na caixa de diálogo Control Algorithm do menu Set-up e selecione Ts=0.004420s, Continuous Time Control. Selecione PID e Set-up Algorithm. Entre com os valores $K_p = 0.075$ ($K_d = 0$ e $K_i = 0$), selecione Encoder #2 e OK. Selecione Implement Algorithm e depois OK.
- 3. Selecione no menu **Command** a opção **Trajectory**, e escolha **Step** e **Closed Loop**. Defina a amplitude do degrau como 1000 [counts], duração (**dwell time**) de 1000ms e repetição 1.

4. Selecione **Zero Position** no menu **Utility** para zerar as posições dos encoders.

- 5. Selecione **Execute** no menu **Command** e então **Run**. A haste fará movimento oscilatório em torno do ponto central. Os dados do encoder correspondentes a resposta sub-amortecida estão coletados. Selecione **OK** depois que os dados tenham sido carregados.
- 6. Selecione **Set-up Plot** no menu **Plotting** e escolha **Encoder # 2 Position**. Selecione **Plot Data**. Deve-se observar uma resposta sub-amortecida da posição da haste.
- 7. Meça a amplitude inicial Y_0 e amplitude Y_n após n ciclos. Para medidas mais precisas, pode-se ampliar a área de interesse do gráfico através da opção **Axis Scaling** do menu **Plotting**. Use o procedimento descrito na Seção 5.2 para obter ξ e ω_n . Observe que o valor de regime é pequeno porém não nulo, e deve ser medido para o cálculo de X_0 e X_n .
- 8. Utilize as expressões de ξ e ω_n em função dos parâmetros m_1 , c_1 e ganhos de hardware k_s , k_f e k_x , para o pêndulo com controle de haste, dados em (27) na Seção 9.1. Determine os valores da massa da haste m_1 e do coeficiente de atrito viscoso c_1 . Comente sobre a precisão dos resultados obtidos, verificando o valor de m_1 dado pelo fabricante e apresentado na **Tabela 2** do roteiro da **Experiência 4**.

9.4 Confirmação do momento de inércia da haste principal

- 1. Com o sistema de atuação desligado, certifique-se que os dois pesos "orelha"da haste deslizante foram removidos. Trave essa haste no centro de sua excursão utilizando um elástico.
- 2. Remova o calço da haste principal, e ajuste a distância do contra-peso ao pivô para $\ell_t = 8[cm]$ que corresponde ao parâmetro $\ell_{w2} = 11,75[cm]$, vide Fig. 4;
- 3. Entre na caixa de diálogo Control Algorithm do menu Set-up e ajuste Ts=0.00442s. Vá para Set up Data Acquisition no menu Data e selecione Encoder #1 como variável a adquirir; especifique uma amostragem a cada 5 ciclos. Selecione OK para sair. Selecione Zero Position no menu Utility para zerar as posições dos encoders;
- 4. Certifique-se de que o pêndulo pode oscilar livremente. Selecione **Trajectory** no menu **Command**. Entre na caixa de diálogo **Step**, **Setup**. Escolhendo **Open-Loop Step**, defina um degrau de amplitude **0**, duração de **10000 ms** e **1** repetição. Retorne à **Background Screen** clicando **OK** sucessivamente. O controlador agora está ajustado para adquirir 20s de dados, mas sem atuação do motor. Este procedimento pode ser repetido e a duração do degrau ajustada para variar o período de aquisição de dados;

5. Selecione **Execute** no menu **Command**. Desloque manualmente o pêndulo aproximadamente 10° [graus] da vertical e então solte-o. O pêndulo invertido estável oscilará e lentamente retornará à posição de equilíbrio, ao mesmo tempo em que os dados do Encoder #1 são coletados para registrar a resposta do pêndulo. Selecione **OK** depois dos dados terem sido carregados;

- 6. Selecione **Setup Plot** no menu **Plotting** e escolha **Encoder** #1 **Position**. Selecione **Plot Data** no menu **Plotting**. Deve-se observar o registro da resposta do pêndulo;
- 7. Meça o período de oscilação do pêndulo T (em segundos), considerando o tempo necessário para vários ciclos dividido pelo número de ciclos. Meça também o valor de picos sucessivos e utilize os resultados da seção 5.2 para calcular o fator de amortecimento (ξ) e a frequência natural (ω_n) do sistema;
- 8. Ajuste a distância do contra-peso ao pivô para $\ell_t = 11$ [cm] que corresponde ao parâmetro $\ell_{w2} = 14{,}75$ [cm], vide Fig. 4. Repita os ítens 3 a 7 anteriores;
- 9. De posse dos valores de ℓ_{w2} e das correspondentes frequências de oscilação medidas, obtenha o momento de inércia da haste principal através da equação (39). Comente sobre a precisão dos resultados obtidos, verificando o valor de J_0^* dado pelo fabricante e apresentado na **Tabela 2** do roteiro da **Experiência 4**.
- 10. Faça uma simulação do modelo linear obtido para o pêndulo com a haste deslizante bloqueada, e compare com as curvas correspondentes da simulação não-linear da **Experiência 4**. Explique brevemente qual foi o objetivo do experimento e que passos foram seguidos para atingi-lo. Discuta as aproximações adotadas no procedimento experimental de identificação.

10 Procedimento Experimental: levitador magnético

Para a identificação do Levitador Magnético vamos assumir que o modelo a ser adotado é o Modelo Linearizado por compensação das não-linearidades do Atuador e do Sensor, conforme descrito anteriormente.

A função não-linear que fornece $y_{1_{raw}} = f_s(y_1)$, já foi determinada na **Experiência** $\mathbf{2}$ e a compensação será sempre feita automaticamente quando se optar pelo modo **Setup Sensor Calibrator** no menu **Set-up**. Deve-se, neste caso, utilizar os parâmetros obtidos pelo método dos mínimos quadrados determinados na **Experiência 2**. A função não-linear do atuador será identificada e compensada no procedimento descrito a seguir.

10.1 Identificação do atuador não-linear

Conforme já visto, a função que expressa a força mecânica que age sobre o magneto é dada pela equação (6). A determinação desta função será feita através da medida de posição em regime permanente do magneto, para cada valor de corrente aplicada à bobina #1. De posse de uma tabela com as medidas correspondentes determina-se $F_{u_{11}}(y_1,u_{11})$ pelo método dos mínimos quadrados. Com isso teremos os parâmetros a e b da função desejada. No software de controle que descrevemos na próxima seção, o sinal de controle será multiplicado pela inversa desta função e com isto a não-linearidade do atuador estará sendo compensada a cada instante de amostragem do controlador.

É importante observar que o regime permanente ocorre quando a força peso se iguala à força mecânica produzida pela ação da corrente na bobina. Nesta situação teremos a seguinte condição de equilíbrio, para cada valor de corrente.

$$F_{u_{11}}(y_{1_{regime}}, u_{11}) = m_1 g \tag{40}$$

10.2 Identificação do modelo linearizado por compensação

Considerando o Caso Monovariável (SISO) já estudado na experiência anterior, vemos que o modelo com compensação das não-linearidades é obtido com o prévio conhecimento da massa m_1 , cuja medida pode ser feita através de uma balança de precisão.

Os outros parâmetros do modelo, que são ganho do sistema k_{hw} e coeficiente de atrito viscoso c_1 , poderão ser determinados a partir da resposta ao degrau de um sistema de controle em malha fechada, conforme mostrado na Fig. 24.

Nesta figura a malha é fechada por realimentação unitária, gerando-se um sinal de erro e conseqüentemente um sinal de controle que será proporcional a este. A função de transferência de malha fechada será então obtida através de manipulação algébrica, e terá a forma da equação (41).

$$\frac{Y_1(s)}{R(s)} = \frac{K_p k_{hw}/m_1}{s^2 + c_1 s/m_1 + K_p k_{hw}/m_1}$$
(41)

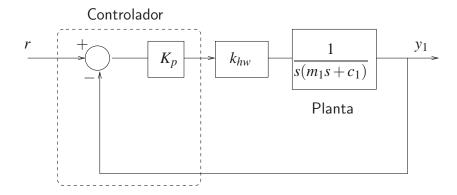


Figura 24: Controle em malha fechada do levitador magnético: controlador proporcional K_p .

Esta função de transferência é de segunda ordem, e pode ser escrita na forma canônica evidenciando a **freqüência natural** ω_n e o **fator de amortecimento** ξ deste sistema de controle, na forma

$$\frac{Y_1(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi \omega_n s + \omega_n^2}$$
 (42)

donde deduzimos que,

$$\omega_n = \sqrt{\frac{K_p k_{hw}}{m_1}}, \quad \xi = \frac{1}{2\omega_n} (\frac{c_1}{m_1})$$
(43)

Comparando-se as equações (41) e (42) fica evidente que medindo-se o valor de ξ a partir do **over-shoot** na resposta ao degrau, e medindo-se a freqüência amortecida ω_d , podemos determinar os parâmetros k_{hw} e c_1 , uma vez que o valor da massa foi medido e é conhecido a priori.

Na primeira parte do experimento obtém-se através de medidas a melhor curva de calibração para a força de interação magnética $F_{u_{11}}$ como função da posição y_1 e da corrente na bobina u_1 . Na segunda parte um controlador proporcional é implementado para realizar medidas do atrito viscoso, ganho de hardware e confirmação da massa do disco. Guarde (salve) todos os gráficos utilizados nas medidas para inclusão no relatório.

10.3 Identificação do atuador não-linear

1. Ligue o controlador. Entre no menu **Set-up** e selecione **Set-up Sensor Calibrator**. Selecione **Calibrate Sensor** e **Apply Thermal Compensation**. Utilize os valores de *e*, *f*, *g* e *h*, determinados na **Experiência 2**, que se encontram disponíveis na configuração Cal_2005.cfg. Para isso, basta carregar essa configuração através do menu **File**;

2. No menu **Set-up**, selecione **Control Algorithm** e carregue o programa **Atuador.alg** através da opção **Load from disk**. Selecione **Implement Algorithm**; este programa tem a seguinte forma:

```
begin
control effort1=5000
end
```

Sua função é definir o valor de corrente na bobina #1 a fim de deslocar o magneto #1 até uma determinada altura. No exemplo acima o valor da corrente é de 5000[counts] que corresponde a 0.5[A].

- 3. Varie no programa acima o valor da corrente de 2000 a 11000 [counts], em intervalos de 1000 [counts]. Leia a altura do magneto em [cm] com a máxima precisão possível, procurando manter sempre uma única posição angular para o magneto. Construa uma tabela com os valores obtidos.
- 4. Rode, no Matlab, um programa para a determinação da função $F_{u_{11}}(y_1,u_{11})$. Este programa tem a seguinte forma:

```
close all;
Y1med=[M_1 M_2 M_3 M_4 M_5 M_6 M_7 M_8 M_9 M_10]; % em cm.
U1apl=[2000 3000 4000 5000 6000 7000 8000 9000 10000 11000];
                       % expoente da pot\^{e}ncia
m=MASSA MEDIDA; g=9.8; % massa do disco m=118[g]
for b=0:.01:10
 U=m*g*[(Y1med+b).^N];
   a=U\U1apl;
   Y1aval=Y1med;
    U1aval=m*g*a*[(Y1aval+b).^N] ;
     e=U1apl-U1aval;
    J=e'*e;
   figure(1); hold on; plot(b,J,'.');
 title('escolha de b para erro quadr\'{a}tico m\'{\i}nimo')
end;
grid;
min=ginput(1); pause;
b=min(1)
U=m*g*[(Y1med+b).^N];
a=U\U1apl;
Y1aval=Y1med;
U1aval=m*g*a*[(Y1aval+b).^N];
Klinear=U1aval./U1apl;
figure(2);plot(Y1med,U1apl,'o',Y1aval,U1aval,'+'),grid;title('Finversa')
figure(3);plot(Y1med,Klinear,'-'),grid;title('Klinear')
```

Neste programa varia-se o parâmetro b e determina-se o parâmetro a que leva à inversa da função $F_{u_{11}}(y_1,u_{11})$ correspondente. A seguir determina-se o erro quadrático para cada valor de b e a encontrados. Terminado o ciclo do "for" que

produz a variação em b, plota-se a função de custo J=e'e, o que permite escolher graficamente o valor de b que dá o mínimo custo J_{min} . Fixa-se este valor de b e determina-se o valor de a correspondente.

5. Insira os valores a/10.000 e b determinados no item anterior no algoritmo de controle proporcional P.alg, produzindo a função inversa $a(y_1 + b)^4$.

10.4 Medidas do ganho do sistema k_{hw} e do coeficiente de atrito viscoso c_1

- 1. Ligue o controlador. Entre no menu **Set-up** e selecione **Set-up Sensor Calibrator**. Selecione **Calibrate Sensor** e **Apply Thermal Compensation**. Utilize os valores de *e*, *f*, *g* e *h*, determinados na **Experiência 2**, que se encontram disponíveis na configuração Cal_2005.cfg. Para isso, basta carregar essa configuração através do menu **File**;
- 2. No menu Set-up, selecione Control Algorithm e ajuste Ts=0.001768s. Também carregue o programa P.alg através da opção Load from disk a seguir selecione Edit Algorithm e carregue os valores de a e b encontrados no procedimento em 10.3 de identificação do atuador. Salve o algoritmo modificado na opção Save changes and quit e selecione Implement Algorithm;

Após esse comando, o magneto deve se deslocar 2,0[cm].

Este controlador implementa um algoritmo de controle proporcional, juntamente com as compensações dinâmicas que eliminam as não-linearidades do atuador e do sensor. O ganho proporcional utilizado é $K_p = 0.55$.

- 3. No menu Data vá para Set-up Data Aquisition e selecione Commanded Position 1 e Variable Q10. Especifique Data Sample Period: 5 Ciclos;
- 4. No menu Command selecione a opção Trajectory 1 e escolha a opção Step. Selecione Set-up e defina os seguintes parâmetros: Amplitude: 5000 [counts], Dwell Time: 3000 [ms] e 1 repetition. Em seguida desabilite a opção Unidirectional Moves;
- 5. No menu Command selecione Execute, a seguir Normal Data Sample e Execute Trajectory 1. Então acione Run.
- 6. No menu Plotting selecione Set-up Plot, e escolha Variable Q10 e Commanded Position e em seguida acione Plot Data;

Deve-se observar, no gráfico obtido, uma resposta sub-amortecida para a variável Q10.

 $[\]overline{{}^{4}\text{A divisão por }10^{4}\text{ passa a expressar }a}$ na unidade counts (1 [count] = 10^{-4} [cm]).

7. Meça a amplitude inicial Y_0 e a amplitude Y_n após n ciclos de Q10. Para medidas mais precisas pode-se ampliar a área de interesse do gráfico, através da opção $\mathbf{A}\mathbf{x}\mathbf{i}\mathbf{s}$ Scaling no menu $\mathbf{Plotting}$. Use o procedimento descrito na Seção 5.2 para obter ξ e ω_n . Observe que o valor de regime deve ser medido para o cálculo de X_0 e X_n ;

8. Com o valor $m_1 = 123[g]$, determine o coeficiente de atrito viscoso c_1 e o ganho de hardware k_{hw} a partir das expressões (43), que os relacionam (c_1, k_{hw}, m_1) com (ξ, ω_n) . Comente os resultados obtidos. Faça uma simulação do modelo linear obtido e compare com a curva correspondente da simulação não-linear da **Experiência** 4.

Explique brevemente qual foi o objetivo do experimento e que passos foram seguidos para atingi-lo. Discuta as aproximações adotadas no procedimento experimental de identificação.

Referências

- [1] Ogata, K., Engenharia de Controle Moderno, 2a. Edição, Prentice-Hall do Brasil, 1993.
- [2] Franklin, G. F., Powell, J. D., Emami-Naeini, A., Feedback Control of Dynamic Systems, 2nd Edition, Addison-Wesley, 1990.
- [3] Manual for Model 220 Industrial Emulator/Servo Trainer, ECP, 1995.
- [4] Manual for Model 210/210a Rectilinear Control System, ECP, 1998.
- [5] Manual for Model 205/205a Torcional Control System, ECP, 1997
- [6] Manual for Model 505 Inverted Pendulum, ECP, 1994.
- [7] Manual for Model 730 Magnetic Levitation System, ECP, 1999.