

# UNICAMP – Faculdade de Engenharia Elétrica e de Computação EA-617 Introdução à Simulação Analógica

# Experiência 7: Resposta em Freqüência dos Equipamentos ECP

4 de novembro de 2005

# Sumário

| 1 | Introdução                |                                                              |                                             | 2  |  |  |  |
|---|---------------------------|--------------------------------------------------------------|---------------------------------------------|----|--|--|--|
| 2 | Iden                      | tificaçã                                                     | o de Sistemas pelo Método Freqüencial       | 2  |  |  |  |
|   | 2.1                       | Respo                                                        | sta em Freqüência de Sistemas de 2a. Ordem  | 3  |  |  |  |
| 3 | Procedimento Experimental |                                                              |                                             |    |  |  |  |
|   | 3.1                       | Procedimento de cálculo da relação de amplitudes e defasagem |                                             |    |  |  |  |
|   | 3.2                       | 3.2 Identificação de parâmetros do emulador industrial       |                                             |    |  |  |  |
|   |                           | 3.2.1                                                        | Disco de atuação sem pesos                  | 8  |  |  |  |
|   |                           | 3.2.2                                                        | Disco de atuação com pesos                  | 10 |  |  |  |
|   |                           | 3.2.3                                                        | Discos de atuação e de carga conectados     | 10 |  |  |  |
|   | 3.3                       | Identif                                                      | cação de parâmetros do sistema retilíneo    | 12 |  |  |  |
|   |                           | 3.3.1                                                        | Carro #1 sem pesos                          | 12 |  |  |  |
|   |                           | 3.3.2                                                        | Carro #1 com pesos                          | 13 |  |  |  |
|   |                           | 3.3.3                                                        | Carros #1 e #2 conectados                   | 14 |  |  |  |
|   | 3.4                       | Identificação de parâmetros do sistema torcional             |                                             |    |  |  |  |
|   |                           | 3.4.1                                                        | Disco #1 sem pesos                          | 15 |  |  |  |
|   |                           | 3.4.2                                                        | Disco #1 com pesos                          | 17 |  |  |  |
|   |                           | 3.4.3                                                        | Discos #1 e #3 conectados                   | 17 |  |  |  |
|   | 3.5                       | Identif                                                      | cação dos parâmetros do pêndulo invertido   | 18 |  |  |  |
|   |                           | 3.5.1                                                        | Parâmetros da haste deslizante              | 18 |  |  |  |
|   |                           | 3.5.2                                                        | Parâmetros da haste principal               | 20 |  |  |  |
|   | 3.6                       | Identif                                                      | cação dos parâmetros do levitador magnético | 21 |  |  |  |
|   |                           | 3.6.1                                                        | Disco #1 em malha fechada                   | 21 |  |  |  |
|   |                           | 3.6.2                                                        | Disco #1 sem compensação da força magnética | 23 |  |  |  |
|   |                           |                                                              |                                             |    |  |  |  |

# 1 Introdução

O objetivo dessa experiência é a identificação dos paramêtros desconhecidos dos modelos dos sistemas ECP, utilizando a técnica de resposta em freqüência e a comparação com os valores obtidos anteriormente através da técnica da resposta temporal da experiência 5. Como na identificação via resposta temporal, sempre que possível adota-se configurações para o sistema ECP que reproduzam sistemas de 2a. ordem sub-amortecidos.

Algumas propriedades fundamentais da resposta em freqüência de sistemas de 2a. ordem levemente amortecidos serão usadas para obter indiretamente parâmetros como massas ou momentos de inércias, constantes de mola e coeficientes de atrito viscoso a partir de medidas da planta quando esta se encontra em configurações clássicas do tipo massa-mola, inércia-mola, ou configurações que utilizem controlador proporcional para "simular"o efeito de força de reconstituição de uma mola.

Assim como na resposta temporal a máxima sobre-elevação e a freqüência de oscilação da reposta caracterizam um sistema de 2a. ordem sub-amortecido, na resposta em freqüência um sistema pouco amortecido apresentará um pico na resposta, na freqüência de ressonância característica, e esses dados o caracterizam.

Na próxima seção serão indicados os procedimentos de identificação baseados na resposta em freqüência de sistemas de 2a. ordem, explicitando o método de medidas que será empregado experimentalmente.

# 2 Identificação de Sistemas pelo Método Freqüencial

Podemos afirmar que um sistema linear, assintoticamente estável, invariante no tempo e sujeito a uma entrada senoidal, possui em regime estacionário uma saída senoidal com a mesma freqüência de entrada, porém com amplitude e ângulo de fase em geral distintos. Além disso, se G(s) é a função de transferência desse sistema, para uma entrada senoidal de freqüência  $\omega$ , tem-se

 $|G(j\omega)| = \left|\frac{Y(j\omega)}{U(j\omega)}\right| = \operatorname{Relação de amplitude entre a saída senoidal e a entrada senoidal.}$  $\underline{|G(j\omega)| = \phi(j\omega)} = \phi(j\omega) = \operatorname{Relação de amplitude entre a saída senoidal.}$ 

A saída senoidal em regime estacionário pode ser obtida a partir das características da entrada senoidal (amplitude e freqüência) e das características de  $G(j\omega)$  (amplitude e fase). Alternativamente, a função de transferência de um sistema linear pode ser identificada levantando-se os gráficos da relação de amplitudes e ângulos de fase em função da freqüência.

## 2.1 Resposta em Freqüência de Sistemas de 2a. Ordem

Considere a função de transferência do sistema de 2a. ordem descrita na forma

$$G(s) = \frac{k_{hw}\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

Se  $0 \le \xi < \sqrt{2}/2$ , os pólos do sistema são complexos conjugados e diz-se que esse tipo de sistema é sub-amortecido e sua resposta em freqüência apresenta um pico de ressonância. Identificar o sistema de 2a. ordem consiste em determinar experimentalmente os parâmetros  $\xi \in \omega_n$ , considerando que o ganho de hardware  $k_{hw}$  seja conhecido.

Os seguintes passos devem ser realizados para a identificação experimental:

1. Submete-se o sistema a uma entrada senoidal com amplitude conhecida escolhendo freqüências dentro da faixa de sua utilização. Em regime permanente, se o sistema de 2a. ordem for sub-amortecido, este irá apresentar um pico na freqüência de ressonância  $\omega_r$ , dado por

$$\omega_r = \omega_n \sqrt{1 - 2\xi^2} \tag{1}$$

e o valor de pico na freqüência  $\omega_r$  normalizado  $(M_p)$  é dado por

$$M_p = \frac{1}{2\xi\sqrt{1-\xi^2}}$$
(2)

vide a apostila da experiência 6. Para a utilização das equações acima, lembre-se que é preciso que ocorra ressonância, e portanto

$$1 - 2\xi^2 > 0 \quad \to \quad 0 < \xi < \sqrt{2/2}$$

- 2. O valor de  $\xi$  pode ser obtido diretamente da medida de  $M_p$ .
- 3. O valor da freqüência  $\omega_n$  pode ser obtido da medida de  $\omega_r$  e do valor de  $\xi$  calculado no passo anterior.

# **3** Procedimento Experimental

Para executar as medidas necessárias à identificação do sistema é preciso medir a relação de amplitudes entre entrada e saída senoidais e a defasagem entre esses dois sinais. Num ensaio experimental, sabemos que as medidas não serão exatas devido a impercisões seja no sinal de entrada que está sendo injetado, seja na própria medida devido a imperfeições do medidor. É muito provável que esses sinais sejam imperfeitos devido a presença de ruídos, de interferências de diversas naturezas, de efeito de quantização dos sinais, etc. No ensaio que pretende-se executar, é possível que o resultado de observação de um sinal senoidal tenha semelhança com a curva plotada na Fig. 1.



Figura 1: Sinais senoidais com ruído.

Fazer medidas de amplitudes e defasagens entre sinais como os da Fig. 1 é evidentemente muito difícil, e uma vez que as medidas não iriam apresentar a precisão desejada. Para melhorar a qualidade das medidas, faremos um tratamento numérico desses sinais, de acordo com o diagrama da Fig. 2.



Figura 2: Tratamento de sinal senoidal y para obtenção da amplitude e fase.

Considere um sistema linear e assintoticamente estável, com entrada

$$u(t) = A_0 \operatorname{sen}(\omega t),$$

cuja saída é um sinal senoidal com ruído y que possa ser escrito na forma:

$$y(t) = \bar{y}(t) + e(t)$$

onde  $\bar{y}(t) = B_0 \operatorname{sen}(\omega t + \phi)$  é o sinal exato, e e(t) é o sinal causador da imprecisão ou de ruído, isto é  $e(t) = y(t) - \bar{y}(t)$ . Segundo o diagrama da Fig. 2, para se eliminar os efeitos das imperfeições do sinal, procede-se como a seguir:

1. Considerando um número k de ciclos do sinal, extrai-se o valor médio (valor dc) do sinal y(t), definindo-se

$$y_{\rm dc} = \frac{\omega}{2k\pi} \int_0^{2k\pi/\omega} y(t) \, dt = \frac{\omega}{2k\pi} \int_0^{2k\pi/\omega} e(t) \, dt$$

Assim

$$y(t) - y_{dc} = B_0 \operatorname{sen}(\omega t + \phi) + \bar{e}(t)$$

onde o sinal  $\bar{e}(t)$  tem valor médio nulo.

Calcula-se agora a integral dos produtos do sinal e os sinais seno e cosseno de freqüência ω:

$$y_{s}\left(\frac{2k\pi}{\omega}\right) = \frac{\omega}{2k\pi} \int_{0}^{2k\pi/\omega} [B_{0}\operatorname{sen}(\omega t + \phi) + \bar{e}(t)]\operatorname{sen}\omega t \, dt \tag{3}$$
$$= \frac{B_{0}}{2}\cos\phi - \frac{B_{0}\omega}{4k\pi} \int_{0}^{2k\pi/\omega} \cos(2\omega t + \phi) \, dt + \frac{\omega}{2k\pi} \int_{0}^{2k\pi/\omega} \bar{e}(t)\operatorname{sen}\omega t \, dt$$

Analogamente,

$$y_c\left(\frac{2k\pi}{\omega}\right) = \frac{B_0}{2}\operatorname{sen}\phi - \frac{B_0\omega}{4k\pi}\int_0^{2k\pi/\omega}\operatorname{sen}(2\omega t + \phi)\,dt + \frac{\omega}{2k\pi}\int_0^{2k\pi/\omega}\bar{e}(t)\cos\omega t\,dt \qquad (4)$$

As expressões acima podem ser simplificadas após algumas considerações. Note que a segunda integral nas expressões (3) e (4) é nula e a terceira apresenta como integrando o produto de dois sinais de média nula ( $\bar{e}$  e seno ou cosseno), dividida pelo intervalo de integração, dado por  $2k\pi/\omega$ . Consequentemente o valor da última integral em (3) e (4) deve ser desprezível, o que nos permite expressar:

$$y_s\left(\frac{2k\pi}{\omega}\right) \approx \frac{B_0}{2}\cos\phi, \quad e \quad y_c\left(\frac{2k\pi}{\omega}\right) \approx \frac{B_0}{2}\mathrm{sen}\,\phi$$
 (5)

Podemos afirmar que estas aproximações serão mais precisas quanto maior for o intervalo de integração  $2k\pi/\omega$ , ou equivalentemente o número de ciclos. Com hipóteses gerais sobre o sinal aleatório  $\bar{e}(t)^1$  é possível concluir que a terceira integral em (3) e (4) tendem a zero quando k tende a infinito.

Das expressões em (5), podemos avaliar a relação de amplitudes  $A_r$  e a defasagem  $\phi$  como

$$A_r = \frac{B_0}{A_0} = \frac{2\sqrt{y_s^2 + y_c^2}}{A_0}, \quad \phi = \arctan(\frac{y_c}{y_s})$$

## 3.1 Procedimento de cálculo da relação de amplitudes e defasagem

Para exemplificar e detalhar o procedimento a ser usado no laboratório, considere a observação típica do comportamento do sinal de excitação e de saída de um dos equipamentos do laboratório. A Fig. 3 mostra um destes ensaios, capturados graficamente através da opção do software **Data**, **Export Raw Data**.

 $<sup>{}^{1}</sup>t \rightarrow e(t)$  deve ser um processo ergódico.



Figura 3: Sinais de entrada e de saída típicos de um sistema ECP.

Após o transitório inicial do sistema, ele entra em regime indicado pelo valor constante de amplitude da saída. Para fazermos o cálculo explicado anteriormente é preciso selecionar no segundo gráfico o início do que consideramos o comportamento de regime permanente senoidal, e um número inteiro de ciclos até o final do conjunto de dados. Isso é feito através do programa Matlab manipula.m com a seguinte entrada de dados:

> manipula

| Nome do arquivo com os dados (.txt)               | :> tor_f20.txt    |
|---------------------------------------------------|-------------------|
| Frequencia utilizada (em Hz)                      | :> 2.0            |
| Coluna de dados com o sinal de entrada            | :> 3              |
| Coluna de dados com o sinal de saida              | :> 4              |
| Nome do arquivo para guardar a frequencia (f), a  |                   |
| fase (fi), a relacao de amplitudes (Ar), e a      |                   |
| amplitude do sinais de saida (Bo) (extensao .txt) | :> meu_result.txt |
|                                                   |                   |

Onde:

tor\_f2\_0.txt é o nome do arquivo gravado com os dados do ensaio utilizando o recurso de Export Raw Data do software. As 3 linhas iniciais deste arquivo devem estar "comentadas" para uso do Matlab (símbolo % no início das linhas).

*Importante:* O nome do arquivo gravado deve fazer referência à freqüência utilizada no ensaio, para uso no programa compara.m. No exemplo acima a freqüência utilizada foi 2 Hz, especificada na segunda linha da entrada de dados.

• As colunas de dados de entrada/saída declaradas se referem às colunas do arquivo tor\_f20.txt. Verifique a ordem definida no arquivo de dados do seu ensaio, ou seja, anote as colunas com os sinais de entrada e de saída.

O arquivo meu\_result.txt, nesse exemplo, irá guardar o resultado desejado de forma cumulativa, isto é, os dados de freqüência f, relação de amplitude A<sub>r</sub>, defasagem φ e amplitude de saída B<sub>0</sub> serão gravados nesse arquivo numa nova linha, se o arquivo existir; caso contrário, cria-se o arquivo e grava-se os dados. O nome utilizado pode ser qualquer, com extensão txt.

Os dados carregados são passados para uma função Matlab chamada defasagem.m, que apresenta a seguinte estrutura de chamada:

```
[fi,Ar,Bo]=defasagem(A,f,ce,cs)
```

A é o nome do arquivo de dados já presentes no *workspace* do Matlab, f, ce e cs são respectivamente, as freqüências dos sinais, e as colunas dos sinais de entrada e saída. Retorna então os dados de defasagem, relação de amplitudes e o valor de amplitude de saída a partir da realização do cálculo esquematizado na Fig. 2.

Para a comparação e verificação de consistência dos resultados obtidos com a resposta temporal e a resposta freqüencial, os diagramas de Bode devem ser construídos. Para sobrepor os resultados graficamente utilize a rotina compara.m da seguinte maneira:

- Utilizando os valores dos parâmetros obtidos anteriormente através da resposta temporal, construa a função de transferência apropriada para o ensaio através do comando tf. Suponha que o nome dado seja g1.
- 2. Supondo que g1 esteja disponível no *workspace* do Matlab, utilize o programa compara.m da seguinte forma:

```
> compara
Entre com a função de transferência do sistema,
ela já deve estar disponível utilizando o comando "tf",
verifique se o ensaio foi feito com ou sem controle.
Nome da função de transferência pré-definida :> g1
Nome do arquivo onde estão os valores de freqüência (f), fase (fi),
e relação de amplitudes (Ar) (extensão .txt) :> meu_result.txt
Freqüências mínima e máxima para os diagramas de Bode.
Entre com fmin na forma fmin=10^n1 [Hz] :> 0.1
Entre com fmax na forma fmin=10^n2 [Hz] :> 10
```

A figura com o diagrama de Bode correspondente será criada. Se os resultados estiverem adequados, o resultado deve ser parecido com o da Fig. 4. O Matlab não determina corretamente a fase de sistemas de fase não-mínima, e a rotina compara\_pendulo.m é específica para o pêndulo que tem essa característica.



Figura 4: Resultado comparado do experimentos: resposta temporal e resposta em freqüência.

# 3.2 Identificação de parâmetros do emulador industrial

#### 3.2.1 Disco de atuação sem pesos

- 1. Com o controlador desligado, configure o emulador com o disco de atuação desconectado do restante do conjunto;
- 2. Com o controlador ligado, entre na caixa de diálogo **Control Algorithm** do menu **Set**up e defina **Ts=0.00442s** para **Continuous Time**. No menu **Set-up** selecione **PID** e **Set-up Algorithm**. Entre com os valores  $K_p = 0.03$  e  $K_d = K_i = 0$ , selecione **Feedback Encoder #1** e **OK**. Selecione **Implement Algorithm** e depois **OK**;
- Vá para o Set-up Data Acquisition no menu Data e selecione Commanded Position e Encoder #1 como variáveis a adquirir, e especifique amostragem de dados a cada 3 ciclos.
- 4. Entre no menu Command, vá para Trajectory e selecione Sinusoidal. Em Set-up selecione Closed-Loop, e para o ajuste da amplitude oriente-se pela curva dada na Fig. 5a. A curva serve como referência para os valores de amplitudes, principalmente em torno da freqüência de ressonância, indicada pelos seus valores mínimos. Para freqüências inferiores a da ressonância, o limite pode ser ligeiramente ultrapassado para superar o atrito seco (ou atrito de Coulomb), enquanto para freqüências superiores um limite menor do que o indicado pela curva deve ser respeitado. Essa curva provê um ajuste das

amplitudes de entrada para que se observe na saída amplitudes de magnitude semelhantes em todas as freqüências<sup>2</sup>;

5. Na opção **Frequency** selecione um conjunto de 6 a 8 valores de freqüências diferentes na faixa indicada na Fig. 5a, concentrando as escolhas na região próxima à freqüência de ressonância. Após detectar a freqüência de ressonância adequadamente, selecione mais três freqüências abaixo desta e três acima, dentro da faixa indicada. Para a escolha do número de períodos para execução do movimento, considere um valor suficientemente alto para que o sistema entre em regime, mas não tão longo, para que os arquivos a serem salvos não fiquem excessivamente grandes. Nestes experimentos os valores típicos são de 30 a 40 ciclos;



Figura 5: Valores máximos de amplitude: a) disco de atuação sem pesos; b) disco de atuação com pesos.

- Retorne para o Background Screen, clicando sucessivamente OK. Selecione Zero Position no menu Utility para zerar as posições dos encoders. Comande a execução do movimento com Execute no menu Command;
- 7. Através do **Plot** da curva de resposta, verifique se houve de fato tempo para o sistema entrar em regime permanente; caso não seja observado o comportamento de regime, aumente o número de ciclos no menu **Command**, **Trajectory**, **Sinusoidal** e descarte o ensaio. Caso a resposta tenha atingido o regime permanente, salve esses dados num arquivo com extensão txt, através do menu **Data**, **Export Raw Data**. Dê um nome apropriado a esse arquivo que faça referência à *configuração utilizada* e a *freqüência empregada* neste ensaio, para uso posterior no programa manipula.m. Repita esse procedimento para todas as medidas efetuadas.
- 8. Após a finalização das medidas, utilize os arquivos de dados gravados como entrada para o programa manipula.m, escolhendo a posição comandada **Commanded Position**

<sup>&</sup>lt;sup>2</sup> Via de regra, escolha amplitudes suficientemente altas para que o movimento tenha grandes excursões que superem o *atrito de Coulomb*, mas não tão grandes para evitar que *comportamentos não-lineares* devido a saturação, desbalanceamentos, etc. se tornem aparentes na resposta.

como sinal de entrada e a posição do disco de atuação **Encoder #1 Position** como sinal de saída. Obtenha a relação de amplitudes  $A_r$  e a defasagem  $\phi$  para cada uma das freqüências medidas. Posteriomente utilize o programa compara.m para obter o gráfico com os resultados do experimento, conforme explicado na seção 3.1.

Através da freqüência de ressonância ω<sub>r</sub> e máximo pico M<sub>p</sub> medidos, determine o fator de amortecimento ξ<sub>1sp</sub> e a freqüência natural de oscilação ω<sub>n1sp</sub> através das expressões (1) e (2).

#### **3.2.2** Disco de atuação com pesos

1. Com o controlador desligado, fixe quatro massas de 212 [g] sobre o disco de atuação. Os pesos devem ser fixados a d = 4,5 [cm] do centro do disco, e os pesos têm o raio r = 1,5 [cm]. A inércia total dos pesos é determinada por

$$J_w = 4 \left( md^2 + \frac{1}{2}mr^2 \right);$$

- Repita os passos de 2 a 8 utilizados no experimento anterior, considerando agora a Fig. 5b como referência para as amplitudes.
- 3. Considere  $J_w$  a inércia total dos pesos,  $K_p$  o ganho do controlador e  $k_{hw}$  o ganho de hardware. Da mesma forma que na experiência de identificação através da resposta temporal (Experiência 5), use as seguintes relações para obter o momento de inércia  $J_{dd}$  do disco de atuação e o coeficiente de atrito  $c_{dd}$  do disco:

$$\omega_{n1sp}^{2} = \frac{K_{p}k_{hw}}{J_{dd}}, \qquad \omega_{n1cp}^{2} = \frac{K_{p}k_{hw}}{J_{w} + J_{dd}}, \qquad 2\xi_{1sp}\,\omega_{n1sp} = \frac{c_{dd}}{J_{dd}};$$

 Junte os gráficos necessários, os parâmetros obtidos, e compare com os resultados da identificação por resposta temporal, indicando a consistência ou não dos dois experimentos.

Com os ensaios descritos nos dois experimentos com o disco de atuação, o grupo deve ter obtido os paramêtros deste disco (momento de inércia  $J_{dd}$ , coeficiente de atrito sem pesos  $c_{dd}$ ) e o ganho de hardware  $k_{hw}$ .

#### 3.2.3 Discos de atuação e de carga conectados

- 1. Com o controlador desligado, retire os pesos do disco de atuação, do disco de carga e coloque o sistema na seguinte configuração:
  - Engrenagens no pino SR:  $n_{pd} = 24$  (atuação e pino),  $n_{pl} = 36$  (carga e pino),
  - Correias: 140 (atuação e pino) e 260 (carga e pino);



Figura 6: Valores máximos de amplitude: discos conectados sem pesos.

- Na caixa de diálogo Set-up Data Acquisition no menu Data inclua também para aquisição de dados a informação do Encoder #2. Considere agora a Fig 6 como referência para as amplitudes, e repita os passos de 2 a 6 indicados no experimento do disco de atuação sem pesos.
- 3. Escolhendo a posição comandada **Commanded Position** como entrada e a posição do disco de atuação **Encoder #1 Position** como saída, utilize o programa manipula.m para obter a relação de amplitudes  $A_r$  e a defasagem  $\phi$  para cada uma das freqüências medidas. A função de transferência do sistema de dois discos com realimentação é de 2a. ordem, envolvendo os parâmetros dos discos: inércia  $J_{dd}$  e  $J_{dl}$  e coeficiente de atrito sem pesos  $c_{dd}$  e  $c_{dl}$ , a inércia do pino SR  $J_{pi}$ , a constante de hardware  $k_{hw}$  e o ganho do controlador  $K_p$ . Esta função de transferência é dada na seção 6 da apostila da Experiência 5, sendo o momento de inércia equivalente dado por

$$J_{dd} + \frac{J_{pi}}{g_r'^2} + \frac{J_{dl}}{g_r^2}, \quad g_r = 6\frac{n_{pd}}{n_{pl}}, \quad g_r' = \frac{n_{pd}}{12}$$

e a inércia  $J_{pi}$  do pino SR com engrenagens é dada por

$$J_{pi} = J_{SR} + J_{n_{pd}} + J_{n_{pl}}$$

 $J_{SR} = 8.0 \times 10^{-6}$  inércia do pino, onde  $J_{n_{pd}} = 3.1 \times 10^{-5}$  inércia da engrenagem de 24 dentes,  $J_{n_{pl}} = 3.9 \times 10^{-5}$  inércia da engrenagem de 36 dentes.

4. Utilize o programa compara.m com a função de transferência obtida dos dados do experimento de resposta temporal, e os dados deste experimento, conforme explicado na seção 3.1, para traçar os diagramas de Bode para essa configuração. Com os dados da resposta temporal, construa a função de transferência  $\Theta_1(s)/R(s)$  dada na seção 6 da apostila da Experiência 5, onde R(s) é a posição comandada **Commanded Position** em [counts].

5. Com os parâmetros obtidos nos experimentos descritos nas seções 3.2.1 e 3.2.2, e os valores de inércia dados acima, obtenha os parâmetros do disco de carga ( $J_{dl}$  e  $c_{dl}$ ). Verifique se os valores encontrados nessa experiência estão compatíveis com os encontrados na experiência de resposta temporal.

# 3.3 Identificação de parâmetros do sistema retilíneo

#### 3.3.1 Carro #1 sem pesos

1. Com o controlador desligado, trave o segundo carro utilizando uma chave apropriada, conforme o diagrama abaixo. Conecte o primeiro e o segundo carros utilizando uma mola de dureza média;

![](_page_11_Figure_5.jpeg)

- Com o controlador ligado, entre na caixa de diálogo Control Algorithm do menu Setup e defina Ts=0.00442s para Continuous Time. Vá para o Set-up Data Acquisition no menu Data e selecione Commanded Position e Encoder #1 como variáveis a adquirir, e especifique amostragem de dados a cada 3 ciclos.
- 3. Entre no menu Command, vá para Trajectory e selecione Sinusoidal. Em Set-up selecione Open-Loop, e para o ajuste da amplitude oriente-se pela curva dada na Fig. 7a. A curva serve como referência para os valores de amplitudes, principalmente em torno da freqüência de ressonância, indicada pelos seus valores mínimos. Para freqüências inferiores a da ressonância, o limite pode ser ligeiramente ultrapassado para superar o atrito seco (ou atrito de Coulomb), enquanto para freqüências superiores um limite menor do que o indicado pela curva deve ser respeitado. Essa curva provê um ajuste das amplitudes de entrada para que se observe na saída amplitudes de magnitude semelhantes em todas as freqüências<sup>3</sup>;
- 4. Na opção Frequency selecione um conjunto de 6 a 8 valores de freqüências diferentes na faixa indicada na Fig. 7a, concentrando as escolhas na região próxima à freqüência de ressonância. Após detectar a freqüência de ressonância adequadamente, selecione mais três freqüências abaixo desta e três acima, dentro da faixa indicada. Para a escolha do número de períodos para execução do movimento, considere um valor suficientemente alto para que o sistema entre em regime, mas não tão longo, para que os arquivos a serem salvos não fiquem excessivamente grandes. Nestes experimentos os valores típicos são de 30 a 40 ciclos;

<sup>&</sup>lt;sup>3</sup> Via de regra, escolha amplitudes suficientemente altas para que o movimento tenha grandes excursões que superem o *atrito de Coulomb*, mas não tão grandes para evitar que a mola seja excessivamente distendida, apresentado então *comportamento não-linear*.

![](_page_12_Figure_1.jpeg)

Figura 7: Valores máximos de amplitude: a) carro #1 sem pesos; b) carro #1 com pesos.

- Retorne para o Background Screen, clicando sucessivamente OK. Selecione Zero Position no menu Utility para zerar as posições dos encoders. Comande a execução do movimento com Execute no menu Command;
- 6. Através do **Plot** da curva de resposta, verifique se houve de fato tempo para o sistema entrar em regime permanente; caso não seja observado o comportamento de regime, aumente o número de ciclos no menu **Command**, **Trajectory**, **Sinusoidal** e descarte o ensaio. Caso a resposta tenha atingido o regime permanente, salve esses dados num arquivo com extensão txt, através do menu **Data**, **Export Raw Data**. Dê um nome apropriado a esse arquivo que faça referência à *configuração utilizada* e a *freqüência empregada* neste ensaio, para uso posterior no programa manipula.m. Repita esse procedimento para todas as medidas efetuadas.
- 7. Após a finalização das medidas, utilize os arquivos de dados gravados como entrada para o programa manipula.m, escolhendo a posição comandada Commanded Position como sinal de entrada e a posição do carro #1 Encoder #1 Position como sinal de saída. Obtenha a relação de amplitudes A<sub>r</sub> e a defasagem φ para cada uma das freqüências medidas. Posteriomente utilize o programa compara.m para obter o gráfico com os resultados do experimento, conforme explicado na seção 3.1.
- Através da freqüência de ressonância ω<sub>r</sub> e máximo pico M<sub>p</sub> medidos, determine o fator de amortecimento ξ<sub>1sp</sub> e a freqüência natural de oscilação ω<sub>n1sp</sub> através das expressões (1) e (2).

## 3.3.2 Carro #1 com pesos

- 1. Com o controlador desligado, fixe quatro massas de 500g sobre o primeiro carro;
- Repita os passos de 2 a 8 utilizados no experimento anterior, considerando agora a Fig. 7b como referência para as amplitudes.

3. Da mesma forma que na experiência de identificação através da resposta temporal (Experiência 5), denote por  $m_w$  o peso combinado das 4 massas, e use as seguintes relações para obter a massa  $m_1$  do primeiro carro sem carga, a constante de mola  $k_1$ , e o coeficiente de atrito  $c_{1sp}$  do carro #1 sem pesos:

$$\omega_{n1sp}^2 = \frac{k_1}{m_1}, \qquad \omega_{n1cp}^2 = \frac{k_1}{m_w + m_1}, \qquad 2\xi_{1sp}\,\omega_{n1sp} = \frac{c_{1sp}}{m_1};$$

 Junte os gráficos necessários, os parâmetros obtidos, e compare com os resultados da identificação por resposta temporal, indicando a consistência ou não dos dois experimentos.

Com os ensaios descritos nos dois experimentos com o carro #1, o grupo deve ter obtido os paramêtros deste carro (massa  $m_1$ , coeficiente de atrito viscoso sem pesos  $c_1$ ), a constante da mola ( $k_1$ ) e o ganho de hardware  $k_{hw}$ .

# 3.3.3 Carros #1 e #2 conectados

- 1. Com o controlador desligado, destrave o segundo carro e retire os pesos dos carros;
- Repita os passos de 2 a 6 indicados no experimento do carro #1 sem pesos. Inclua também para aquisição de dados a informação do Encoder #2. Considere agora a Fig.
   8 como referência para as amplitudes.

![](_page_13_Figure_8.jpeg)

Figura 8: Valores máximos de amplitude: carros #1 e #2 conectados sem pesos.

3. Escolhendo a posição do carro #1 como entrada e a posição do carro #2 como saída, utilize o programa manipula.m para obter a relação de amplitudes  $A_r$  e a defasagem  $\phi$  para cada uma das freqüências medidas. Com essa escolha de entrada e saída, a função de transferência em questão é de 2a. ordem, envolvendo a constante de mola  $k_1$  e os parâmetros do carro #2: massa  $m_2$  e coeficiente de atrito sem pesos  $c_2$  (mostre isto). Utilize o programa compara.m com a função de transferência obtida dos dados do experimento de resposta temporal, e os dados deste experimento, conforme explicado na seção 3.1.

Com o valor da constante da mola  $k_1$  obtido nos experimentos descritos em 3.3.1 e 3.3.2 obtenha os parâmetros do carro #2 ( $m_2$  e  $c_2$ ).

4. Verifique se estes valores estão compatíveis com os dados encontrados na experiência de resposta temporal. Para a análise comparativa, construa a função de transferência  $X_2(s)/F(s)$  dada por

$$\frac{X_2(s)}{F(s)} = \frac{k_1}{D_r(s)}$$

 $\operatorname{com} D_r(s) = m_1 m_2 s^4 + (c_1 m_2 + c_2 m_1) s^3 + [(m_1 + m_2)k_1 + c_1 c_2] s^2 + (c_1 + c_2)k_1 s.$ 

Acrescente o ganho  $k_{hw}$  de forma que  $k_{hw}X_2(s)/F(s) = X_2(s)/E(s)$  onde E(s) é a posição comandada **Commanded Position** em [counts], e trace os Diagramas de Bode utilizando o programa compara.m.

# 3.4 Identificação de parâmetros do sistema torcional

## 3.4.1 Disco #1 sem pesos

- Com o controlador desligado trave o disco #2 utilizando um pino e uma chave apropriada;
- Com o controlador ligado, entre na caixa de diálogo Control Algorithm do menu Setup e defina Ts=0.00442s para Continuous Time. Vá para o Set-up Data Acquisition no menu Data e selecione Commanded Position e Encoder #1 como variáveis a adquirir, e especifique amostragem de dados a cada 2 ciclos.
- 3. Entre no menu Command, vá para Trajectory e selecione Sinusoidal. Em Set-up selecione Open-Loop, e para o ajuste da amplitude oriente-se pela curva dada na Fig. 9a. A curva serve como referência para os valores de amplitudes, principalmente em torno da freqüência de ressonância, indicada pelos seus valores mínimos. Para freqüências inferiores a da ressonância, o limite pode ser ligeiramente ultrapassado para superar o atrito seco (ou atrito de Coulomb), enquanto para freqüências superiores um limite menor do que o indicado pela curva deve ser respeitado. Essa curva provê um ajuste das amplitudes de entrada para que se observe na saída amplitudes de magnitude semelhantes em todas as freqüências<sup>4</sup>;
- 4. Na opção Frequency selecione um conjunto de 6 a 8 valores de freqüências diferentes na faixa indicada na Fig. 9a, concentrando as escolhas na região próxima à freqüência de ressonância. Após detectar a freqüência de ressonância adequadamente, selecione mais três freqüências abaixo desta e três acima, dentro da faixa indicada. Para a escolha do

<sup>&</sup>lt;sup>4</sup> Via de regra, escolha amplitudes suficientemente altas para que o movimento tenha grandes excursões que superem o *atrito de Coulomb*, mas não tão grandes para evitar que a mola de torsão seja excessivamente distendida, apresentado então *comportamento não-linear*.

número de períodos para execução do movimento, considere um valor suficientemente alto para que o sistema entre em regime, mas não tão longo, para que os arquivos a serem salvos não fiquem excessivamente grandes. Nestes experimentos os valores típicos são de 30 a 40 ciclos;

![](_page_15_Figure_2.jpeg)

Figura 9: Valores máximos de amplitude: a) disco #1 sem pesos; b) disco #1 com pesos.

- Retorne para o Background Screen, clicando sucessivamente OK. Selecione Zero Position no menu Utility para zerar as posições dos encoders. Comande a execução do movimento com Execute no menu Command;
- 6. Através do **Plot** da curva de resposta, verifique se houve de fato tempo para o sistema entrar em regime permanente; caso não seja observado o comportamento de regime, aumente o número de ciclos no menu **Command**, **Trajectory**, **Sinusoidal** e descarte o ensaio. Caso a resposta tenha atingido o regime permanente, salve esses dados num arquivo com extensão txt, através do menu **Data**, **Export Raw Data**. Dê um nome apropriado a esse arquivo que faça referência à *configuração utilizada* e a *freqüência empregada* neste ensaio, para uso posterior no programa manipula.m. Repita esse procedimento para todas as medidas efetuadas.
- 7. Após a finalização das medidas, utilize os arquivos de dados gravados como entrada para o programa manipula.m, escolhendo a posição comandada Commanded Position como sinal de entrada e a posição do disco #1 Encoder #1 Position como sinal de saída. Obtenha a relação de amplitudes A<sub>r</sub> e a defasagem φ para cada uma das freqüências medidas. Posteriomente utilize o programa compara.m para obter o gráfico com os resultados do experimento, conforme explicado na seção 3.1.
- Através da freqüência de ressonância ω<sub>r</sub> e máximo pico M<sub>p</sub> medidos, determine o fator de amortecimento ξ<sub>1sp</sub> e a freqüência natural de oscilação ω<sub>n1sp</sub> através das expressões (1) e (2).

#### 3.4.2 Disco #1 com pesos

1. Com o controlador desligado, fixe quatro massas de 500 [g] sobre o primeiro disco. Os pesos devem ser fixados a d = 9,0 [cm] do centro do disco, e os pesos têm o raio r = 4,95/2 [cm]. A inércia total dos pesos é determinada por

$$J_w = 4\left(md^2 + \frac{1}{2}mr^2\right);$$

- Repita os passos de 2 a 8 utilizados no experimento anterior, considerando agora a Fig.
   9b como referência para as amplitudes.
- 3. Considere  $J_w$  a inércia total dos pesos, e da mesma forma que na experiência de identificação através da resposta temporal (Experiência 5), use as seguintes relações para obter o momento de inércia  $J_1$  do primeiro disco sem carga, a constante de torsão da primeira mola  $k_1$ , e o coeficiente atrito  $c_{1sp}$  do disco #1 sem pesos:

$$\omega_{n1sp}^2 = \frac{k_1}{J_1}, \qquad \omega_{n1cp}^2 = \frac{k_1}{J_w + J_1}, \qquad 2\xi_{1sp}\,\omega_{n1sp} = \frac{c_{1sp}}{J_1};$$

 Junte os gráficos necessários, os parâmetros obtidos, e compare com os resultados de identificação por resposta temporal, indicando a consistência ou não dos dois experimentos.

Com os ensaios descritos nos dois experimentos com o disco #1, o grupo deve ter obtido os paramêtros deste disco (momento de inércia  $J_1$ , coeficiente de atrito viscoso sem pesos  $c_1$ ), a constante de torsão da mola ( $k_1$ ) e o ganho de hardware  $k_{hw}$ .

## 3.4.3 Discos #1 e #3 conectados

- 1. Com o controlador desligado, retire os pesos do disco #1, remova o disco #2 e certifiquese que o disco #3 esteja instalado;
- Repita os passos de 2 a 6 indicados no experimento do disco #1 sem pesos. Inclua também para aquisição de dados a informação do Encoder #3. Considere agora a Fig. 10 como referência para as amplitudes.
- 3. Escolhendo a posição do disco #1 como entrada e a posição do disco #3 como saída, utilize o programa manipula.m para obter a relação de amplitudes  $A_r$  e a defasagem  $\phi$ para cada uma das freqüências medidas. Com essa escolha de entrada e saída, a função de transferência em questão é de 2a. ordem, envolvendo a constante da mola de torsão equivalente  $1/k_{eq} = 1/k_1 + 1/k_3$  e os parâmetros do disco #3: inércia  $J_3$  e coeficiente de atrito sem pesos  $c_3$  (mostre isto). Utilize o programa compara.m com a função de transferência obtida dos dados do experimento de resposta temporal, e os dados deste experimento, conforme explicado na seção 3.1.

Com o valor da constante da mola  $k_1$  obtido nos experimentos descritos em 3.4.1 e 3.4.2 obtenha os parâmetros do disco #2 ( $J_3$  e  $c_3$ ), supondo que a constante da mola  $k_3$  seja idêntica à  $k_1$ .

![](_page_17_Figure_1.jpeg)

Figura 10: Valores máximos de amplitude: discos #1 e #3 conectados sem pesos.

4. Verifique se estes valores estão compatíveis com os dados encontrados na experiência de resposta temporal. Para a análise comparativa, construa a função de transferência  $\Theta_3(s)/T(s)$  dada por

$$\frac{\Theta_3(s)}{T(s)} = \frac{k_{\rm eq}}{D_t(s)}$$

 $\operatorname{com} D_t(s) = J_1 J_3 s^4 + (c_1 J_3 + c_3 J_1) s^3 + [(J_1 + J_3) k_{eq} + c_1 c_3] s^2 + (c_1 + c_3) k_{eq} s.$ 

Acrescente o ganho  $k_{hw}$  de forma que  $k_{hw}\Theta_3(s)/T(s) = \Theta_3(s)/E(s)$  onde E(s) é a posição comandada **Commanded Position** em [counts], e trace os Diagramas de Bode utilizando o programa compara.m.

# 3.5 Identificação dos parâmetros do pêndulo invertido

#### 3.5.1 Parâmetros da haste deslizante

- 1. Com o controlador desligado, trave a haste principal na posição vertical com os calços apropriados. Retire os pesos "orelhas" da haste deslizante, e coloque-a na posição central x = 0;
- 2. Com o controlador ligado, entre na caixa de diálogo **Control Algorithm** do menu **Set**up e defina **Ts=0.001768s** para **Continuous Time**. No menu **Set-up** selecione **PID** e **Set-up Algorithm**. Entre com os valores  $K_p = 0.075$  e  $K_d = K_i = 0$ , selecione **Feedback Encoder #2** e **OK**. Selecione **Implement Algorithm** e depois **OK**;
- Vá para o Setup Data Acquisition no menu Data e selecione Commanded Position e Encoder #2 como variáveis a adquirir, e especifique uma amostragem de dados a cada 5 ciclos;
- 4. Entre no menu **Command**, vá para **Trajectory** e selecione **Sinusoidal**. Em **Set-up** selecione **Closed-Loop**, e para o ajuste da amplitude oriente-se pela curva dada na Fig. **11**a.

A curva serve como referência para os valores de amplitudes, principalmente em torno da freqüência de ressonância, indicada pelos seus valores mínimos. Para freqüências inferiores a da ressonância, o limite pode ser ligeiramente ultrapassado para superar o atrito seco (ou atrito de Coulomb), enquanto para freqüências superiores um limite menor do que o indicado pela curva deve ser respeitado. Essa curva provê um ajuste das amplitudes de entrada para que se observe na saída amplitudes de magnitude semelhantes em todas as freqüências<sup>5</sup>;

5. Na opção Frequency selecione um conjunto de 6 a 8 valores de freqüências diferentes na faixa indicada na Fig. 11a, concentrando as escolhas na região próxima à freqüência de ressonância. Após detectar a freqüência de ressonância adequadamente, selecione mais três freqüências abaixo desta e três acima, dentro da faixa indicada. Para a escolha do número de períodos para execução do movimento, considere um valor suficientemente alto para que o sistema entre em regime, mas não tão longo, para que os arquivos a serem salvos não fiquem excessivamente grandes. Nestes experimentos os valores típicos são de 30 a 40 ciclos;

![](_page_18_Figure_3.jpeg)

Figura 11: Valores máximos de amplitude: a) haste deslizante sem pesos; b) haste principal com contrapesos ( $\ell_{w2} = -13,75$ cm).

- Retorne para o Background Screen, clicando sucessivamente OK. Selecione Zero Position no menu Utility para zerar as posições dos encoders. Comande a execução do movimento com Execute no menu Command;
- 7. Através do **Plot** da curva de resposta, verifique se houve de fato tempo para o sistema entrar em regime permanente; caso não seja observado o comportamento de regime, aumente o número de ciclos no menu **Command**, **Trajectory**, **Sinusoidal** e descarte o ensaio. Caso a resposta tenha atingido o regime permanente, salve esses dados num arquivo com extensão txt, através do menu **Data**, **Export Raw Data**. Dê um nome apropriado a esse arquivo que faça referência à *configuração utilizada* e a *freqüência*

<sup>&</sup>lt;sup>5</sup> Via de regra, escolha amplitudes suficientemente altas para que o movimento tenha grandes excursões que superem o *atrito de Coulomb*, mas não tão grandes para evitar que *comportamentos não-lineares* devido a saturação, desbalanceamentos, etc. se tornem aparentes na resposta.

*empregada* neste ensaio, para uso posterior no programa manipula.m. Repita esse procedimento para todas as medidas efetuadas.

- 8. Após a finalização das medidas, utilize os arquivos de dados gravados como entrada para o programa manipula.m, escolhendo a posição comandada Commanded Position como sinal de entrada e a posição do disco de atuação Encoder #1 Position como sinal de saída. Obtenha a relação de amplitudes A<sub>r</sub> e a defasagem φ para cada uma das freqüências medidas. Posteriomente utilize o programa compara.m para obter o gráfico com os resultados do experimento, conforme explicado na seção 3.1.
- Através da freqüência de ressonância ω<sub>r</sub> e máximo pico M<sub>p</sub> medidos, determine o fator de amortecimento ξ<sub>1</sub> e a freqüência natural de oscilação ω<sub>n1</sub> através das expressões (1) e (2).
- 10. Considere  $K_p$  o ganho do controlador e o ganho de hardware  $k_s k_f k_x$ . Da mesma forma que na experiência de identificação através da resposta temporal (Experiência 5, seção 9.1), use as seguintes relações para obter a massa da haste deslizante  $m_{1o}$  e o coeficiente de atrito viscoso  $c_1$

$$\omega_{n1}^2 = \frac{K_p k_s k_f k_x}{m_{1o}}, \qquad 2\xi_1 \,\omega_{n1} = \frac{c_1}{m_{1o}},$$

 Junte os gráficos necessários, os parâmetros obtidos, e compare com os resultados de identificação por resposta temporal, indicando a consistência ou não dos dois experimentos.

#### 3.5.2 Parâmetros da haste principal

- 1. Com o controlador desligado, destrave a haste principal. Coloque o contrapeso a 10,0 [cm] da base do pivot, o que corresponde a posicionar o seu centro de massa em  $\ell_{w2} = -13,75$  [cm] (configuração estável);
- 2. Implemente o controle da haste deslizante, conforme o passo 2 da seção 3.5.1;
- Vá para o Setup Data Acquisition no menu Data e selecione Commanded Position, Encoder #1 e Encoder #2 como variáveis a adquirir, e especifique uma amostragem de dados a cada 35 ciclos;
- 4. Siga o procedimento indicado nos passos de 4 a 7 da seção 3.5.1 utilizando agora como referência para valores de amplitudes a curva da Fig. 11b;
- 5. Escolhendo a posição da haste deslizante **Encoder #2** como entrada e posição da haste principal **Encoder #1** como saída, utilize o programa manipula.m para obter a relação de amplitudes  $A_r$  e a defasagem  $\phi$  para cada uma das freqüências medidas. Com essa escolha de entrada e saída, a função de transferência em questão é de 2a. ordem, envolvendo os parâmetros do pêndulo na seguinte forma:

$$\frac{\Theta(s)}{X_1(s)} = G_2(s) = -\frac{k_a}{k_x} \cdot \frac{m_1(\ell_0 s^2 - g)}{J^* s^2 + c_r s - g(m_1 \ell_0 + m_2 \ell_c)}$$
(6)

onde  $c_r = 0,01439$  é o coeficiente de atrito da haste rotacional, e os outros parâmetros do pêndulo são apresentados na Tabela 2 da apostila da Experiência 4. Mostre a validade dessa função de transferência, a partir da funções de transferência linearizadas do pêndulo apresentadas na apostila da Experiência 5, equações (18) e (19), acrescentando o coeficiente de atrito  $c_r$  e os ganhos adequados para expressar  $\Theta(s)$  e  $X_1(s)$  em counts. Utilize o programa compara.m com a função de transferência obtida dos dados do experimento de resposta temporal, e os dados deste experimento, conforme explicado na seção 3.1.

- 6. A partir da freqüência de ressonância obtida, calcule o momento de inércia  $J_0^*$  da haste principal, considerando a função de transferência em (6) e o fator de amortecimento desprezível.
- 7. Junte os gráficos necessários, o valor de  $J_0^*$  calculado, e compare com os resultados obtidos da identificação por resposta temporal e da Tabela 2 da Experiência 4, indicando a consistência ou não dos experimentos.

# 3.6 Identificação dos parâmetros do levitador magnético

## 3.6.1 Disco #1 em malha fechada

- 1. Com o controlador desligado, configure o levitador somente com o disco #1;
- Ligue o controlador. Entre no menu Set-up e selecione Set-up Sensor Calibrator. Selecione Calibrate Sensor e Apply Thermal Compensation. Utilize os valores de *e*, *f*, *g* e *h*, determinados na Experiência 2, que se encontram disponíveis na configuração Cal\_2005.cfg.
- 3. Entre na caixa de diálogo **Control Algorithm** e defina **Ts=0.001768s**. Carregue o algoritmo **P.alg** através da opção **Load from disk**. Em seguida selecione **Edit Algorithm** e certifique-se de que o ganho do controlador proporcional é  $K_p = 0.55$ . Em seguida selecione **Implement Algorithm**. O disco irá se mover para a altura de 2,0 [cm] mantendo-se nesta posição;
- Vá para o Setup Data Acquisition no menu Data e selecione Commanded Position e Variable Q10 como variáveis a adquirir, e especifique uma amostragem de dados a cada 2 ciclos;
- 5. Entre no menu **Command**, vá para **Trajectory** e selecione **Sinusoidal**; em **Set-up** selecione **Closed-Loop**. Faça medidas em frequências específicas na faixa de de 1 a 6 Hz, e para o ajuste da amplitudes oriente-se pela Tabela 1.

Esses pontos servem como referência para os valores de amplitudes, e estão localizados em torno da freqüência de ressonância<sup>6</sup>;

<sup>&</sup>lt;sup>6</sup> Via de regra, escolha amplitudes suficientemente altas para que o movimento tenha grandes excursões que superem o *atrito de Coulomb*, mas não tão grandes para evitar que *comportamentos não-lineares* devido a não-hogeneidade do fluxo magnético, desbalanceamentos, etc. se tornem aparentes na resposta.

| Frequência [Hz] | Amplitude [counts] |
|-----------------|--------------------|
| 2,0             | 4.000              |
| 3,0             | 1.000              |
| 4,0             | 1.000              |
| 5,0             | 1.800              |

Tabela 1: Sugestão de amplitudes para o experimento.

- 6. Na opção Frequency selecione um conjunto de 6 a 8 valores de freqüências diferentes na faixa indicada na na Tabela 1, concentrando as escolhas na região próxima à freqüência de ressonância. Após detectar a freqüência de ressonância adequadamente, selecione mais três freqüências abaixo desta e três acima, dentro da faixa indicada. Para a escolha do número de períodos para execução do movimento, considere um valor suficientemente alto para que o sistema entre em regime, mas não tão longo, para que os arquivos a serem salvos não fiquem excessivamente grandes. Nestes experimentos os valores típicos são de 30 a 40 ciclos;
- Retorne para o Background Screen, clicando sucessivamente OK. Selecione Zero Position no menu Utility para zerar as posições dos encoders. Comande a execução do movimento com Execute no menu Command;
- 8. Através do Plot da curva de resposta, verifique se houve de fato tempo para o sistema entrar em regime permanente; caso não seja observado o comportamento de regime, aumente o número de ciclos no menu Command, Trajectory, Sinusoidal para valores próximos de 60 ciclos e descarte o ensaio anterior. Caso a resposta tenha atingido o regime permanente, salve esses dados num arquivo com extensão txt, através do menu Data, Export Raw Data. Dê um nome apropriado a esse arquivo que faça referência à configuração utilizada e a freqüência empregada neste ensaio, para uso posterior no programa manipula.m. Repita esse procedimento para todas as medidas efetuadas.
- 9. Após a finalização das medidas, utilize os arquivos de dados gravados como entrada para o programa manipula.m, escolhendo a posição comandada Commanded Position como sinal de entrada e a posição do disco #1 Variable Q10 como sinal de saída. Obtenha a relação de amplitudes A<sub>r</sub> e a defasagem φ para cada uma das freqüências medidas. Posteriomente utilize o programa compara.m para obter o gráfico com os resultados do experimento, conforme explicado na seção 3.1.
- Através da freqüência de ressonância ω<sub>r</sub> e máximo pico M<sub>p</sub> medidos, determine o fator de amortecimento ξ<sub>1</sub> e a freqüência natural de oscilação ω<sub>n1</sub> através das expressões (1) e (2).
- 11. Considere  $K_p$  o ganho do controlador e a massa do disco #1  $m_1 = 123$ [g]. Da mesma forma que na experiência de identificação através da resposta temporal (Experiência 5, seção 10.2), use as seguintes relações para obter o valor de  $k_{hw}$  e do coeficiente de atrito

 $c_1$ 

$$\omega_{n1}^2 = \frac{K_p k_{hw}}{m_1}, \qquad 2\xi_1 \,\omega_{n1} = \frac{c_1}{m_1}$$

## 3.6.2 Disco #1 sem compensação da força magnética

Neste experimento vamos implementar somente a compensação da não-linearidade do sensor de posição, mantendo a relação de interação não-linear dos campos magnéticos entre a bobina (atuador) e o disco magnético. Nesta situação, a interação magnética entre a bobina e o disco magnético provoca uma força de repulsão que se opõe a força peso, cuja resultante é uma força de reconstituição equivalente à de uma mola mecânica. Para operação com pequenos deslocamentos em torno de um ponto de operação, utilizando a linearização do atuador por série de Taylor, define-se uma "mola" cuja constante vamos denotar por  $k_1$ , e o levitador com um disco pode ser estudado como um sistema massa mola simples. Para a análise, utiliza-se inicialmente o modelo não-linear para um único disco:

$$m_1 \ddot{y}_1 + c_1 \dot{y}_1 = F u_{11}(y_1) - m_1 g$$

Para o estudo em questão, a expressão da força  $Fu_{11}$  deve ser linearizada em torno do ponto de operação ( $u_{10}$ ,  $y_{10}$ ), usando a expansão em série de Taylor:

$$Fu_{11} \cong Fu_{11}(u_{10}, y_{10}) + \frac{\partial Fu_{11}}{\partial u_1}(u_{10}, y_{10})(u_1 - u_{10}) + \frac{\partial Fu_{11}}{\partial y_1}(u_{10}, y_{10})(y_1 - y_{10})$$
$$= \frac{u_1}{a(100y_{10} + b)^4} - \frac{400u_{10}}{a(100y_{10} + b)^5}y_1 + \frac{400u_{10}y_{10}}{a(100y_{10} + b)^5}$$

Assim, adotando-se  $u_{10}$  de tal forma que

$$\frac{400u_{10}y_{10}}{a(100y_{10}+b)^5} = m_1g\tag{7}$$

o modelo linearizado fica:

$$m_1 \ddot{y}_1 + c_1 \dot{y}_1 + \frac{400u_{10}}{a(100y_{10} + b)^5} y_1 = \frac{u_1}{a(100y_{10} + b)^4}$$
(8)

De modo que a frequência de ressonância do sistema linearizado é tal que:

$$\omega_n^2 = \sqrt{\frac{400u_{10}}{a(100y_{10}+b)^5}} \cdot \frac{1}{m_1}$$

#### • Determinação de k<sub>1</sub> (Efeito de mola entre a bobina #1 e o disco #1).

Para estas medidas a configuração é identica à anterior, ou seja somente o disco #1 estará presente :

- Adote a altura y<sub>10</sub> de equilíbrio do disco #1 como 2,0 [cm] e calcule através da expressão (7) o valor da corrente u<sub>10</sub> [A] necessária para levar o disco ao equilíbrio. Utilize o comando solve do Matlab para este cálculo da seguinte forma: u0=solve('400\*u0\*y0/(a\*(100\*y0+b)^5)=m1\*g', 'u0'), introduzindo os valores numéricos das constantes;
- 2. No menu File carregue os parâmetros de calibração do sensor. Através da opção Load Settings carregue o arquivo "Cal\_2005.cfg". Entre no menu Setup, Sensor Calibration, selecione a opção Calibrate Sensor  $Y_{cal} = a/Y_{raw} + f/sqrt(Y_{raw}) + g + h * Y_{raw}$  e habilite a opção Apply Thermal Compesation;
- 3. Entre na caixa de diálogo **Control Algorithm** e defina **Ts=0.001768s**. Carregue o algoritmo **MA.alg** através da opção **Load Algorithm**. Usando a opção **Edit**, introduza no algoritmo o valor calculado de  $u_{10}$  na unidade counts (= Ampère  $\times 10^4$ ). Em seguida selecione **Implement Algorithm**. O disco deve se mover para a altura de 2,0 [cm] mantendo-se nesta posição;

**Observação:** Nesta situação o sistema levitador opera sem a compensação do atuador e sem controle; somente a compensação da força peso está sendo utilizada para manter o disco a altura de 2,0 [cm]. Para pequenos deslocamentos, a interação magnética entre o disco e a bobina pode ser considerada como um efeito de mola.

# 4. Entre no menu **Data** a seguir **Setup Data Aquisition** e selecione **Commanded Position**, **Control Effort** e **Variable Q10**;

5. Repita os passos de 5 a 8 utilizados no experimento anterior, considerando agora a Tabela 2 como referência para as amplitudes;

| Frequência [Hz] | Amplitude [counts] |
|-----------------|--------------------|
| 2,0             | 2.000              |
| 3,0             | 1.400              |
| 4,0             | 1.800              |
| 5,0             | 3.000              |

Tabela 2: Sugestão de amplitudes para o experimento.

6. A partir da freqüência de ressonância e do valor de pico obtidos determine o valor de  $k_1$  e compare com o valor teórico conforme expressão (8).

# Referências

- [1] Ogata, K., Engenharia de Controle Moderno, 2a. Edição, Prentice-Hall do Brasil, 1993.
- [2] Franklin, G. F., Powell, J. D., Emami-Naeini, A., *Feedback Control of Dynamic Systems*, 2nd Edition, Addison-Wesley, 1990.

- [3] Soderström, T., Stoica, P., System Identification, Prentice Hall, 1987.
- [4] Manual for Model 220 Industrial Emulator/Servo Trainer, ECP, 1995.
- [5] Manual for Model 210/210a Rectilinear Control System, ECP, 1998.
- [6] Manual for Model 205/205a Torcional Control System, ECP, 1997
- [7] Manual for Model 505 Inverted Pendulum, ECP, 1994.
- [8] Manual for Model 730 Magnetic Levitation System, ECP, 1999.