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SINR Bounds for Broadcast Channels with
Zero-Forcing Beamforming and Limited Feedback

Fabio Gabrielli Fernandes, Student Member, IEEE, Renato da Rocha Lopes, and Danilo Zanatta Filho

Abstract—Channel state information at the transmitter (CSIT)
enables high rates in multiuser systems with multiple transmit
antennas, as it can be used for multiplexing gain and multiuser
diversity. However, CSIT is often obtained through information
fedback from the users, and it can be severely quantized to limit
overhead. In this case, transmitting to multiple users will typically
cause interference among them, which degrades the signal-to-
interference-plus-noise ratio (SINR). In this letter, we derive
bounds on this SINR, assuming that the transmitter uses zero-
forcing beamforming, and that active users are almost orthogonal
to one another. Simulation results show that our bounds may be
used as a metric for user scheduling.

Index Terms—Broadcast channels, array signal processing,
feedback communication, cochannel interference, diversity meth-
ods.

I. INTRODUCTION

CHANNEL state information at the transmitter (CSIT) is
crucial for high-rate transmission in wireless systems

with multiple transmit antennas [1]. Indeed, CSIT can be
used for interference mitigation, allowing the system to serve
several users simultaneously. Also, CSIT allows the system to
transmit to the users with the most favorable channels, achiev-
ing multiuser diversity. However, CSIT is not easily available
in practice. For instance, in frequency-division duplex systems,
the users must estimate the channel and feed it back to the base
station (BS). To limit the overhead incurred by this feedback,
severe quantization may be employed. In this case, the system
must be able to exploit a very imprecise CSIT.

In [2], the authors propose a method to exploit limited CSIT
in multiple-input-single-output (MISO) broadcast channels.
The feedback is divided into channel quality information
(CQI) and channel direction information (CDI). The CDI,
corresponding to the quantization of the normalized channel
vector of the users, is used by the BS to perform zero-
forcing beamforming (ZFBF), enabling simultaneous trans-
mission to several users. The CQI, which is related to the
signal-to-interference-plus-noise ratio (SINR), is used for user
scheduling and rate allocation. However, the actual SINR
cannot be computed at the user terminals, as it depends on
the beamforming vectors, which are known only at the BS
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after scheduling. To circumvent this problem, [2] proposes a
CQI metric based on a bound on the expected value of the
interference of each link.

In this paper we derive two lower bounds on the SINR
resulting from the use of ZFBF with limited feedback. In
contrast with [2], we bound the actual SINR, not its expected
value. One of the bounds is tight, and is based on information
available at the users. The other bound improves on the first
by using information available at the transmitter after user
selection. Although we could not prove that this second bound
is tight, we can prove that, by using the knowledge of which
users were scheduled, it always improves on the first bound.
As in [2], we assume that users are served with equal power
and that the scheduling algorithm is constrained to selecting
users that are all “almost” orthogonal. (This concept will be
made precise in the sequel.) Besides [2], our derivations also
share some similarities with [3] and [4]. However, the bounds
in [3] and [4] are used mostly for user selection, and do not
provide good results when used for rate adaptation. This paper
extends [5] by the same authors, deriving tighter and more
general lower bounds.

This paper is organized as follows: In Section II, we
describe our system model and the problem to be treated.
In Section III we derive the SINR lower bounds. Section IV
shows some numerical results, and Section V is the conclu-
sion.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The channel model used in this paper is the wireless MISO
broadcast channel1, composed of one BS with an array of
Nt transmit antennas, and K user terminals, each with one
antenna. We assume block, flat fading. At each block the BS
transmits to M ≤ Nt equal-power users, and performs ZFBF
to separate them spatially. Both beamforming and scheduling
are based on information fed back by the users through a
delay- and error-free channel. We assume perfect knowledge
of the channel at the receivers.

In each block the k-th scheduled user receives the signal

yk =
√
ρwH

k hk xk +
√
ρ

M∑
j=1,j �=k

wH
j hk xj + nk, (1)

where hk is the Nt× 1 channel vector of the k-th user, wk is
the beamforming vector, xk is the signal intended for the k-th
user, and nk is additive white noise with distribution N (0, σ2).
We assume that E[|xk|2] = 1 and ‖wk‖ = 1, so that ρ is the
power allocated to each scheduled user. The power constraint

1The bounds proposed here could be easily extended to MIMO channel
using, for instance, the method proposed in [6].
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may be written as Mρ ≤ P , where P is the total transmit
power.

As in [2], we divide channel state feedback into channel
quality and channel direction information. The CQI is nor-
mally given in terms of the SINR [2], which, from (1), is
given by

γk =
ρ |wH

k hk|2
σ2 + ρ

∑M
j=1,j �=k |wH

j hk|2
. (2)

The CDI, on the other hand, is used at the BS for zero-
forcing beamforming. When full CSIT is available, the unit-
norm beamforming vector of the k-th user is orthogonal to
the channels of all other scheduled users2. In other words,
|wH

k hj | = 0 when j �= k. Note that only the channel direction
is relevant for this orthogonality condition, so this is the
quantity that is quantized and fedback. The quantization of
CDI is performed by picking the vector out of a unit-norm
codebook {c1, c2, c3, . . . cN}3 that shows the best alignment
with the channel [2]. Mathematically, the quantized channel
of the k-th user, ĥk, is given by ĥk = argmaxci |hH

k ci|.
Finally, we assume that the scheduling algorithm only

schedules users whose quantized channels are ε-orthogonal
[7]. In other words, the quantized channels of scheduled users
k and j satisfy

|ĥH
k ĥj | ≤ εh ∀ j �= k. (3)

We assume that M and εh are system parameters known by
all users.

As can be seen from (2), the SINR cannot be computed
at any terminal. The BS has no access to hk, whereas the
users have no access to wk, which are calculated at the BS
after user scheduling. In the next section, we determine a
lower bound on the SINR that may be computed at the user
terminal. Then, we propose a correction factor, applied by the
BS after determining the beamforming vectors, that improves
the bound.

III. LOWER BOUNDS ON THE SINR

In this section, we derive lower bounds on the SINR in (2)
under the system model described in Section II. We begin by
rewriting (2). To that end, we decompose the channel vector
of the k-th user as

hk = ||hk|| h̃k = ||hk|| (ak ĥk + ākek), (4)

where h̃k is the normalized channel vector, ak is the projection
of h̃k onto the quantized CDI ĥk, ek is a unit vector
orthogonal to ĥk, and āk is the projection of h̃k onto ek.
Also, note that the ZFBF vectors are chosen by the BS based
on the quantized CDI. Thus, instead of satisfying |wH

k hj | = 0,
the ZFBF vectors satisfy

|wH
j ĥk| = 0 ∀ j �= k, (5)

2This choice is not unique if the channels do not form a base. In this
case, additional constraints may be imposed, such as the maximization of the
received power [1].

3The user may use different codebooks, which may improve system
performance. However, as this would not impact the derivations in this paper,
we will not consider this possibility.

which leads to residual interference between the users. Using
(4) and (5), the instantaneous SINR with the beamforming
vectors in (5) can be written as

γk =
ρ ‖hk‖2 |ak wH

k ĥk + āk w
H
k ek|2

σ2 + ρ ‖hk‖2
∑M

j=1,j �=k |āk wH
j ek|2

. (6)

We now derive bounds on (6).

A. Tight Lower Bound at the User Terminal

In this section, we derive a tight lower bound on the SINR,
based on the information available at the user terminals. To
prove that the bound is tight, we will construct codebook
vectors and a channel realization that result in an SINR equal
to the bound. Our proof is based on the following lemmas.

Lemma 1: Assume that the quantized channels are ε-
orthogonal, and that the ZFBF vectors wk satisfy (5). Then,
|wH

i wj | ≤ min(εw, 1) for i �= j, where

εw =
εh

1− (M − 2) εh
. (7)

Proof: See Appendix A, where we also show that the
bound is tight.

Lemma 2: If the beamforming vectors satisfy |wH
i wk| ≤

εw, with εw given by (7), then the residual interference term
in (6) is upper-bounded by

M∑
j=1,j �=k

|wH
j ek|2 ≤ 1 + (M − 2) εw. (8)

Proof: See Appendix B, where we also show that the
bound is tight.

Lemma 3: If the quantized channel vectors are ε-
orthogonal, then

|wH
k ek|2 ≤ B̄2 and |wH

k ĥk|2 ≥ B2, (9)

where B̄2 � 1−B2 and

B2 � (1 + εh)
1− (M − 1) εh
1− (M − 2) εh

. (10)

Proof: The value of B already appears without proof
in [2]. In appendix C, we provide a simple derivation of this
bound. We also show that it is tight.

We are now ready to derive a tight lower bound on the
SINR of the link between the BS and the k-th user.

Theorem 1: Let αk = |ak| = |h̃H
k ĥk|, and ᾱk = |āk| =

|h̃H
k ek|. Assume that M users are scheduled to transmit with

equal power using ZFBF. Then, if |ĥH
k ĥj | ≤ εh for all of the

M scheduled users, the SINR γk is lower bounded by γLBk
,

i.e., γk ≥ γLBk
, where

γLBk
=

P
M ‖hk‖2 (αk B − ᾱkB̄)2

σ2 + P
M ‖hk‖2 ᾱ2

k (1 + (M − 2) εw)
. (11)

Proof: We first use the fact that |a + b| ≥ ∣∣|a| − |b|∣∣, as
well as (9) to derive a lower bound on the numerator of (2):

ρ|wH
k hk|2 ≥ ρ ‖hk‖2 (|ak wH

k ĥk| − |ākwH
k ek|)2(12a)

≥ ρ ‖hk‖2 (αk B − ᾱkB̄)2, (12b)
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which is equal to the numerator in (11) when ρ = P
M , that is,

when M users are scheduled with equal power. Equality holds
in (12a) when ak w

H
k ĥk and ākw

H
k ek have opposite phase. If

this condition is not satisfied by the bound-achieving codebook
vectors of the appendices, we can use orthogonal operations
of reflections and rotations of these vectors to ensure the
opposite signs of the terms of interest. Equality holds in (12b)
when |wH

k ĥk| = B, which can happen because the bound in
lemma 3 is tight. Thus, the bound derived in (12) is tight.

The upper bound on the denominator of (6) is a direct
consequence of Lemma 2. Applying (8) to (6) and using
ρ = P

M , the result follows. The overall bound is tight because
the lemmas provide tight bounds.

Note that the tightness of the three lemmas and the theorem
is shown by cumulatively constructing an example of channel
and codebook vectors in which the bounds are achieved. As
the same example is used in all cases, equality holds simul-
taneously for the three lemmas and the theorem. However,
tightness is proved under the assumption that the number
of scheduled users, M , is known. If fewer than M users
are scheduled, the bound may be too pessimistic, as the
system will present less interference. If more than M users
are scheduled, the bound may no longer be valid, as the
interference may be greater than that assumed in (11).

Finally, note that B and B̄ depend on εh, which is assumed
to be known by all users. Also, ‖hk‖, αk and ᾱk can be
computed at the user terminals. Thus, the bound is based solely
on information available at the users. The BS, on the other
hand, knows what beamforming vectors are actually used for
transmission. In the sequel, we propose an adjustment to the
lower bound that uses this information to improve the bound.

B. Lower Bound Adjustment at the Base Station

To motivate the need for adjusting the bound, consider a
scenario of high quantization accuracy. In this case, αk → 1
and ᾱk → 0, so the the residual interference vanishes. As a
result, when M users are scheduled,

γLBk
→

P
M ‖hk‖2 B2

σ2
. (13)

Now, let γFull CSITk
be the SINR of the k-th user with full

CSIT. In this case, there is no residual interference, so that
we may write

γFull CSITk
=

P
M |wH

k hk|2
σ2

. (14)

Since B ≤ |wH
k hk|, we see from (13) that, even with highly

accurate quantization, γLBk
may not approach the SINR with

full CSIT in (14). In this section, we propose an adjusted
bound, γ̂k, that circumvents this problem.

We propose that the adjusted bound be obtained by multi-
plying γLBk

by a constant χ, so that γ̂k = χγLBk
. The value

of χ should guarantee that γ̂k is still a lower bound on the
actual SINR. Now, the denominator of χγLBk

is the same as
that of γLBk

, which was proven to bound the denominator
of γk. Thus, we only need to ensure that the numerator of
χγLBk

is a lower bound on the numerator of γk. As (12a) is

a lower bound on this numerator, we see that χγLBk
≤ γk as

long as

χρ ‖hk‖2 (αk B−ᾱk B̄)2 ≤ ρ ‖hk‖2 (αk βk−ᾱk β̄k)
2, (15)

where βk = |wH
k ĥk| and β̄k = |wH

k ek|. From (15), we see
that the optimal value for the adjustment is the largest value
of χ that satisfies

χ ≤ f(αk, βk, B) � (αk βk − ᾱk β̄k)
2

(αk B − ᾱk B̄)2
. (16)

However, the base station has no access to the value of
αk, thus it cannot compute f(αk, βk, B). Hence, the optimal
value from the point of view of the BS, χ′, is given by
χ′ = minαk

f(αk, βk, B). Now, note that ᾱk < αk ≤ 1 and
β̄k < βk ≤ 1. By differentiation, it is easy to see that, in
this domain, f(αk, βk, B) is monotonically decreasing in αk.
Thus, its minimum is attained at αk = 1. Therefore we have
that

χ′ = f(1, βk, B) =
β2
k

B2
. (17)

Note that the multiplication by χ′ does not decrease the
bound, since βk ≥ B. Also, with this adjustment, the bound
approaches the true SINR as the accuracy of quantization
increases.

IV. NUMERICAL RESULTS

In this section, we show numerical results that illustrate the
bounds derived in this paper, and the improvement attained by
the adjustment at the base station. To that end, we simulated
a system with three transmit antennas, 100 users and a signal-
to-noise ratio of P/σ2 = 20 dB. We used εh = 0.328,
obtained by trial and error to optimize the rates achieved
by the proposed bound. Grassmannian codebooks [8] with
nine bits were used for quantizing the CDI. We assume the
CQI feedback to be unquantized. For each channel realization,
we performed user selection using weighted clique search [7]
based on the lower bound fed back by the users. In Fig. 1, we
show the ratio between the two bounds derived in this paper
and the actual SINR of the best scheduled user, computed with
perfect channel knowledge. As expected, our bounds never
exceed the actual SINR. We also point out that the adjustment
at the base station always results in a higher value, providing a
bound consistently larger (in this case, 11% on average) than
the one computed by the user terminals.

We also compared the performance of the adjusted bound
proposed in this paper to the CQI measure in [2], when both
are used for rate adaptation. Fig. 2 shows the resulting sum
rates as a function of the number of CDI bits for Nt = 2, 3 and
4 transmit antennas, for 100 users, εh = 0.328, and P/σ2 =
10 dB. It can be seen that increasing the number of antennas
can decrease the sum rate, depending on how many CDI bits
are available. This is explained by the considerable decrease
in quantization accuracy when complex dimensions are added
to the channel vector and the number of bits is kept constant.
The number of interferers is another factor that contributes
to this behavior, as more users can be served simultaneously
when more antennas are added. However, as seen in Fig. 2,
for any number of CDI bits the proposed bound achieves the
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Fig. 1. Ratio between the bounds and the actual SINR.

Fig. 2. Adapted sum rate as a function of CDI feedback load for Nt =
2, 3 and 4 transmit antennas.

best rates. Furthermore, as shown in [5], the rates achieved by
the bounds proposed here are less sensitive to the choice of
εh.

V. CONCLUSION

In this paper, we derived two bounds for the SINR in mul-
tiuser MISO systems with limited feedback that employ zero-
forcing beamforming and user selection. The bounds assume
that M ≤ Nt ε-orthogonal users are scheduled to transmit
with equal power. The first bound is based on information
available at the users, and is tight. The second bound can
be computed at the base-station, and uses the knowledge of
what the actual beamforming vectors are. As shown in the
simulations, the adjusted bound improves the first bound. The
performance of the bound for rate adaptation is also assessed
through simulations.

APPENDIX A
PROOF OF LEMMA 1

To prove that |wH
i wj | ≤ εw when |ĥH

i ĥj | ≤ εh, let Ĥ =
QR be the QR decomposition [9] of the matrix Ĥ whose
columns are the quantized channel vectors ĥk of the M ≤ Nt

scheduled users. Note that the M ×M matrix ĤHĤ = RHR
contains the inner products ĥH

i ĥj , so its diagonal elements are
equal to 1 and the magnitude of its off-diagonal elements are

bounded by ε. We now exploit the upper-triangular structure of
R to bound its elements. To that end, let κj be the lower bound
on rjj , and κi,j be the upper bound on rij . Since ‖ĥ1‖ = 1,
it is trivial that |r11| = κ1 = 1. For any ĥi , i > 1, we have
that |ĥH

i ĥ1| ≤ εh, and therefore |ri1| ≤ εh � κi,1.
The lower bound on |r22|, κ2, is easily found by using the

fact that ‖ĥ2‖ = 1, so that |r22|2 = 1 − |r21|2. Also, since
|r21| ≤ εh, we may write |r22|2 ≥ 1− ε2h = κ2

2. For the terms
|ri2|, we use the fact that |ĥH

i ĥ2| ≤ εh for all i > 2 to show
that

|ri2| ≤ εh + ε2h√
1− ε2h

= κi,2. (18)

The same idea used for the components of ĥ2 can be applied
to the general case of ĥi to find that

|rij | ≤ κi,j =
εh +

∑j−1
l=1 κ2

i,l

κj
for i > j (19a)

|rjj | ≥ κj =
√
1−∑j−1

l=1 κ2
i,l. (19b)

From (19), we have the following relationships between the
bounds:

κ2
j = κ2

j−1 − κ2
i,j−1, (20)

κ2
i,j−1 = κi,j κj − κi,j−1 κj−1. (21)

Now, the beamforming vectors can also be written in the
basis Q. From the ZFBF condition in (5), we see that

wk = wk,k qk + wk,k+1 qk+1 + . . .+ wk,M qM , (22)

so that wH
k ĥj = 0, for j < k. Since the order of the vectors

is arbitrary, we can bound |wH
i wj | using any i and j. Thus,

consider the inner product |wH
M wM−1|. Now, since wM−1

is orthogonal to ĥM , we have that w∗
M−1,M−1 rMM−1 =

−w∗
M−1,M rMM . Recalling that ‖wM−1‖ = 1, so that

|wM−1,M−1|2 = 1− |wM−1,M |2, we may write

1− |wM−1,M |2
|wM−1,M |2 =

|rMM |2
|rMM−1|2 . (23)

Now note that |wH
M wM−1| = |wM−1,M |, which is the desired

bound. Let εw(M) be this bound. Applying (19), (20) and (21)
to (23), we see, after some algebra, that

εw(M + 1) =
εw(M)

1− εw(M)
. (24)

Based on (24), we can use induction to prove the bound.
We now provide an example in which this bound is

achieved, therefore proving that the bound is tight. Consider
a matrix A in CM×M , where A(i, i) = 1 and A(i, j) = −εh
for i �= j. Suppose that the Cholesky decomposition could be
performed on A to yield A = ĤH Ĥ, where Ĥ is a possible
realization of the quantized channel matrix. In this case, the
Cholesky decomposition of A is such that equality holds for
the bounds in (19). Thus, from (23), we conclude that the
bound in lemma 1 is tight.

It remains to show that the Cholesky decomposition of A is
possible, i.e., that A is a positive definite matrix [9]. To that
end, we will use the Gershgorin circle theorem [9]. For the
matrix A all circles are equal: centered at 1 and with a radius
of (M − 1) εh. Since the matrix is Hermitian, its eigenvalues
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are real, and from the Gershgorin discs, they are limited to the
interval [1− (M − 1) εh; 1+ (M − 1) εh]. Note that the lower
limit of this interval is in fact an eigenvalue with an associated
eigenvector of [1 1 . . . 1]T. Therefore, A is definite positive if
and only if 1− (M − 1) εh > 0. Note that this condition fails
when the bound in (7) is equal to trivial value of 1. In other
words, when A is not positive definite, the bound is trivial.

APPENDIX B
PROOF OF LEMMA 2

Here we shall derive an upper bound on the term∑M
j=1,j �=k |wH

j ek|2. This term can be rewritten in matrix
notation as

M∑
j=1,j �=k

|wH
j ek|2 = eHk Wk W

H
k ek, (25)

where the matrix Wk, whose columns are the unit-norm
beamforming vectors of all users but the k-th, is unknown,
and ek is a unit-norm vector. Now, the maximum value of
the quadratic form in (25) is achieved when ek is equal to the
eigenvector associated with the largest eigenvalue of the matrix
Wk W

H
k . As this matrix is unknown, the problem seems

ill-posed. However, we can determine the largest eigenvalue
of matrices of the form Wk W

H
k , subject to the known

constraints that ‖wi‖ = 1 and |wH
i wj| ≤ εw.

Now, the non-zero eigenvalues of Wk W
H
k are equal to

the non-zero eigenvalues of WH
k Wk [9]. From Lemma 1, we

know that the diagonal entries of matrix WH
k Wk are equal to

1 and the absolute value of its off-diagonal entries is bounded
above by εw. Thus, all the Gershgorin disks [9] of WH

k Wk

are centered in 1 and the largest radius possible is (M−2) εw.
Since the matrix is Hermitian, and therefore all its eigenvalues
are real, the largest eigenvalue possible is 1+(M−2) εw. We
conclude therefore that eHk Wk W

H
k ek ≤ 1 + (M − 2) εw, as

stated in Lemma 2.
To see that the bound is tight, simply note that [1 1 . . . 1]T is

an eigenvector of WH
k Wk when Wk is the bound-achieving

matrix in appendix A. The corresponding eigenvalue is pre-
cisely 1 + (M − 2) εw. Also, the channel is arbitrary, so that,
given the bound-achieving codebook vectors in appendix A,
we can find a channel realization that yields an error vector
ek that is proportional to [1 1 . . . 1]T. Thus, we conclude that
there exist codebook vectors and a channel realization that
achieve this bound.

APPENDIX C
PROOF OF LEMMA 3

To prove (9), we begin by writing the quantized channel
vectors as in appendix A. In this case, as wM must be

orthogonal to all channel vectors but ĥM , and as ‖wM‖ = 1,
then wM = qM . Thus, wH

M ĥM = ĥMM , so that |wH
M ĥM | ≥

κM . As before, the order of the vectors is arbitrary, so that
considering this particular inner product incurs no loss of
generality. To determine κm, we divide both sides of (20)
by κM−1, and we use (7) and some algebra to see that
κ2
M = κ2

M−1 − (εw(M)κM−1)
2. It can be seen that B

in (10) satisfies this recursion. Now, the term |wH
k ek| can be

bounded by observing that |wH
k ek|2 + |wH

k ĥk|2 ≤ 1, where

equality holds if wk, ĥk and ek are coplanar. Thus, defining
B̄2 � 1 − B2, we can use the fact that |wH

M ĥM | ≥ B to
conclude that

|wH
k ek|2 ≤ B̄2. (26)

This proves the bound. To show that it is tight, note that
the bound-achieving codebook vectors in appendix A and the
channel realization in appendix B have κM = B. To ensure
that wk, ĥk and ek are coplanar, first fix ĥk and ek as in
appendices A and B. Now rotate the quantized channel matrix
Ĥ around the axis formed by ĥk, so that ĥk remains constant.
This would cause the ZFBF vector ŵk to rotate, without
affecting inner products, and without changing ĥk and ek.
Now, we just need to rotate ŵk until it gets to the desired
plane.
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