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Impulse Noise Mitigation Based on Computational
Intelligence for Improved Bit Rate in PLC-DMT
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Abstract—This paper introduces a modified version of the dis-
crete multi–tone transceiver (DMT) to increase the data rate in
broadband power-line communications (PLC). Basically, a compu-
tational-intelligence technique trained by a second-order optimiza-
tion method is applied to mitigate the high-power impulse noise,
while the DMT copes with the severe intersymbol interference ob-
served in power-line channels. The masking of the impulse noise
enhances the signal-to-noise ratio in each DMT subchannel. As a
result, a high number of bits can be allotted to each subchannel
for a given error probability. The simulation results reveal that
the proposed PLC-DMT solution outperforms, in terms of the data
rate, traditional PLC-DMT over different environments, especially
in the presence of additive high-power impulse noise.

Index Terms—Communication systems, data communication,
frequency-division multiplexing, impulse noise, multipath chan-
nels, neural networks, power system communication.

I. INTRODUCTION

POWER-LINE (PL) networks have recently been studied as
a medium for broadband transmission of Internet contents,

for the usage of new multimedia services (video on demand,
audio distribution, multiplayer gaming, HDTV, telephony, and
teleconferencing) and for the connection of peripherals (printers
and scanners) to a computer. This is a new paradigm for the
power-line grids, which were initially developed for energy de-
livery at frequencies of 50 or 60 Hz, and only recently employed
in narrowband applications such as control, maintenance, and
charging by the utility companies [1].

Power-line communications (PLC) is a no-new-wires net-
work that provides convenient and widespread networking
services such as the ones previously mentioned. In this context,
PL networks compete against cable and phone line networks. In
fact, it has been shown that transmissions through low, medium,
and rural voltage grids are as good as digital subscriber line
(DSL) and cable TV channels to provide high-rate data trans-
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missions [2]–[8]. Besides, PLC may also compete with wireless
networks such as 802.11x in the market for high-rate in-home
(indoor) and local-access (outdoor) networks [3].

It has been recognized that PL channels are hostile envi-
ronments for data transmission [1]–[10]. Varying impedances,
high-power impulse noise, multiple-access interference, and
multipath frequency-selective fading, in addition to time-,
frequency-, distance-, and location-dependent attenuations are
their main problems. Moreover, the coupling problem related
to power-line and PLC modems is also another source of
impairment. Several signal-processing techniques have been
applied to overcome such impairments [9]–[13].

Impulse noise is probably one of the most serious impair-
ments introduced by PL channels, since it can corrupt a burst
of transmitted information. However, this impairment has not
been well addressed in the literature. In fact, most of the signal
processing techniques developed for PLC applications have as-
sumed the noise to be Gaussian and, as a result, incur signif-
icant performance degradations when applied to PL channels
corrupted by impulse noise.

Discrete multi-tone transceivers (DMTs) based on the or-
thogonal frequency-division multiplexing (OFDM) concept
have been shown to be a powerful tool for reducing severe
intersymbol interference (ISI) that occurs in broadband PLC
applications [10], [11], [20]. Unfortunately, none of the pro-
posed robust signal processing techniques are capable of coping
with both the impulse noise and ISI.

This contribution presents a modified PLC-DMT solution
[31], in which a nonlinear algorithm based on computational
intelligence [14] is introduced to mask the non-Gaussian noise
while channel shortening and OFDM are applied to deal with
the ISI. It is shown through simulations that the proposed
technique achieves a higher bit rate in the presence of impulse
noise than that achieved in using the traditional techniques
which assume a Gaussian noise interference.

The remainder of this paper is organized as follows.
Section II provides a brief review of PLC, brings up the idea be-
hind PLC-DMT solutions, and presents the PLC-DMT model
and notation. Section III describes the proposed modified
PLC-DMT solution. Section IV reports some simulation results
of the proposed solution. Finally, some concluding remarks and
points to possible directions for future works are included in
Section V.

II. PLC-DMT: SYSTEM DESCRIPTION

By the late 1980s, PLC became a reality with the develop-
ment of high-performance coding and modulation techniques.

0885-8977/$20.00 © 2006 IEEE
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Low-data-rate PLC modems were developed and applied to
very short distances with very low bit rates. In recent years,
researchers have been focusing on data rates higher than
50 Mb/s. This bit rate is still below the theoretical capacity
of PLC, which is known to be higher than 500 Mb/s [7], [8].
However, a successful PLC system must meet several technical
challenges. In fact, the power-line grid may severely corrupt
the transmitted streams of data, mostly because it was devised
for nothing but electrical low-loss power transportation at 50 or
60 Hz. Furthermore, PL channels have several discontinuities
due to impedance mismatches. In addition, although the PL
response hardly varies over time, at certain moments, it can
change abruptly due to changes in the load distribution on the
line.

The cable length, cable type, and degree of branching
characterize the transfer function between two points of a
specific power line. For modeling the transfer characteristics
of power lines, two approaches can be applied, namely, the
bottom up and the top down. The first describes the behavior
of a power-line network by using parameter matrices of the
network components. The latter considers the communication
channel as a black box and describes its transfer characteristics
by a transfer function. Fig. 1 shows the frequency response
of three PL channels of different low-voltage distribution
networks (LVDNs) based on the top-down approach [7], [17].
Frequency-selective property of the PL channel can be seen in
this figure.

Some studies point out that outdoor PL channels of low- and
medium-voltage grids occupy the frequency band from 1 to
10 MHz, while the indoor PL channels cover the frequency
range from 10 to 30 MHz [7], [21]. For both frequency bands,
the noise is modeled as an additive contribution whose compo-
nents are [22]

(1)

where is the background Gaussian noise, is nar-
rowband noise, is a periodic impulse noise asynchronous
to the fundamental component of the power system, is a
periodic impulse noise synchronous to the fundamental com-
ponent of the power system, and is an asynchronous
impulse noise. In this contribution, we consider only the pres-
ence of asynchronous impulse noise, because it is the hardest
problem for broadband PLC and, as a result, for our analysis,
we assume the noise model to be of the form

(2)

It is well known that the multicarrier transmission is a high-
performance, low-complexity solution when the channel is cor-
rupted by ISI and linear additive white Gaussian noise [18],
[19]. Although the noise in the power-line grid is not accurately
modeled as additive white Gaussian noise, several contributions
have reported that multicarrier techniques are also well suited
for PLC [9], [11], [20]. Fig. 2 shows a DMT system scheme, to
be called PLC-DMT, that focuses on achieving high data rates
in the LVDN for broadband Internet-access networks. As can
be seen in Fig. 2, this is the same scheme that is used in xDSL
applications [11], [19], [20]. Consider the transmission of a dis-
crete-time signal through a linear dispersive PL channel

Fig. 1. PL characteristic of three LVDNs.

whose discrete impulse response is given by . The
channel output is then given by

(3)

where takes into account the effect of the ISI and is
the additive non-Gaussian noise at the output of the PL channel.

In OFDM systems, the signal is computed and
transmitted in blocks, so the whole discrete time system
can be understood in a matrix formulation as follows. Let

be the block of encoded
symbols to be transmitted. The OFDM transmitter then forms
the vector , with elements

given by

(4)

where and are, respectively, the real and
imaginary components of the th element of the vector . Next,
the vector , known as the
OFDM symbol, is computed, where denotes the in-
verse discrete Fourier transform (IDFT) matrix. The transmitted
vector is then . It
should be noted that is the length of cyclic prefix
added to each transmitted OFDM symbol for the reason that it
will become apparent shortly, and is the length of equivalent
channel impulse response .

Now, let denote the noise
vector, denote the convolution matrix of the channel-short-
ening time-domain equalizer (TEQ) with an impulse response
given by , and denotes the con-
volution matrix of the equivalent channel impulse response .
Also, let be a vector formed
with the final samples of the TEQ output. Then, we can write

.
It is well known that if a cyclic prefix is added to a sequence,

which is transmitted through a discrete-time system with an
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Fig. 2. Conventional PLC-DMT scheme (S/P: serial to parallel).

impulse response , then the convolution matrix of
, which we call , turns out to be a cyclic matrix

and its eigenvectors are the basis vectors of the discrete Fourier
transform (DFT) [16]. Assuming that is circular (i.e., that the
effective length of the equivalent channel response is given by

[15], [16]), we get

(5)

where is a vector, is the DFT matrix, is
a diagonal matrix, whose values are the DFT coefficients of the
impulse response vector , and is the DFT of the
additive non-Gaussian noise vector . It is clear from (5) that
the transmitted symbols can then be recovered as

(6)

The sequence , which is delivered to the quadrature ampli-
tude modulation (QAM) demodulation block, is obtained after
applying the inverse of the operation performed by (4)–(6). We
next discuss a modified version of the PLC-DMT that addresses
the presence of the non-Gaussian noise in the second term on
the right-hand side (RHS) of (6).

III. PROPOSED MODIFIED PLC-DMT (M-PLC-DMT) SCHEME

From (5) and the fact that is diagonal, it is clear that as
long as the matrix is circular, the DMT system can be seen as
being composed of several intersymbol interference (ISI)-free
subchannels, each of which is subject to a different gain and a
different noise term with power given by

(7)

However, the assumption that the matrix is circular does
not hold exactly, since the channel-shortening equalizer is usu-
ally not able to perfectly reduce the length of the overall impulse
response to less than . Thus, the th subchannel is subject to
some residual ISI, whose power is given by [24]

(8)

where and are the power of the transmitted signal
and the ISI path gain [24], respectively. A subchannel signal-to-

noise ratio (SNR) that takes into account both the noise power
and the residual ISI power is defined by [24]

(9)

where and are the th signal path gain
and the th noise path gain, respectively. The equivalent path
gain vectors are the diagonal entries of . It can be shown
that the achievable bit rate of a DMT system is an increasing
function of this SNR, so that the higher the SNR is, the higher
the bit rate [24].

From (9), it can be seen that in the presence of non-Gaussian
noise, a lower SNR is attained in each th subchannel, de-
creasing the achievable bit rate. Moreover, a low SNR can
disturb the evaluation of the channel-shortening equalizer ,
leading to a suboptimal solution regardless of the criterion
used in the equalizer design. This leads to increased ISI power,
further decreasing the achievable bit rate. Since all of the terms
in (9) are positive, it is clear that a signal processing method that
mitigates the impulse noise components will decrease the noise
power . Moreover, if this method does not affect the other
signal and noise components, the result will be increased SNR
in (9) and, thus, an increased bit-rate capacity and an improved
computation of the TEQ. The use of a suitable method that
completely reduces will lead to a new SNR given by
(10), shown at the bottom of the page, in the th subchannel,
where denotes the attenuation of the impulse noise attained
by using this method.

With this objective, Fig. 3 portrays the proposed modified
PLC-DMT (M-PLC-DMT), where the non-Gaussian noise mit-
igation (NNM) is implemented with a technique that evolves
from computational intelligence, as discussed later.

In Fig. 3, the OFDM and the channel-shortening equalizer
contend with the ISI. The next section discusses the multilayer
perceptron neural network (MLPNN) as a particular case of a
computational intelligence technique for the reduction of the
non-Gaussian noise.

A. Computational Intelligence Based on the Nonlinear
Technique for Impulse Noise Mitigation

The majority of computational intelligence techniques can
be derived from a unique mathematical formulation [14]. As

(10)
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Fig. 3. Modified PLC-DMT scheme.

a result, it is possible to train either neural networks (NNs)
or wavelet networks (WNs), learning from the experience of
human operators expressed in terms of linguistic rules; or to in-
terpret, in linguistic form, the knowledge that either an NN or a
WN has been acquired from prior examples. It is also possible
to train, with a unique training rule, hybrid systems composed
of different computational intelligence techniques [14]. Due to
the aforementioned characteristics, these techniques have been
widely applied to solve many nonlinear problems. In fact, the
ability of such techniques to learn nonlinear features from the
available data have provided new perspectives for classification,
recognition, detection, and removal of signals corrupted by the
nonlinear component.

Considering that the impulse noise is a nonlinear component,
we apply an MLPNN with one hidden layer inside the NNM
block to remove the impulse noise from the output of the PL
channels. If and only if the MLPNN is able to completely re-
move the impulse noise, the input of the TEQ block, which im-
plement a TEQ technique, will have an SNR value given by

(11)

where and are the power of the noise-free channel
output defined in (3) and the background noise given in
(1), respectively. As a result, the new th SNR value defined in
(10) can be achieved. Note that the SNR value at the input of the
TEQ block in the PLC-DMT is given by

(12)

where is the power of the impulse noise. The use of a non-
linear technique in the NNM block instead of a linear one is due
to the fact that the latter, being linear, cannot change intrinsic
properties of the original noise signal, such as regularity [25].
In addition, linear techniques are not well suited to suppress the
additive non-Gaussian noise when the signal is wideband and
nonstationary [25].

To obtain an efficient MLPNN, we use a modified version of
the scaled conjugated gradient (MVSCG) optimization method
[26]. The motivation for using this training method is that the
MVSCG is one of the most efficient second-order optimization
methods for the training of the artificial neural networks (ANNs)
[26], [27]. It is worth stressing that in this proposed modifica-
tion, it is assumed that the channel has been previously esti-
mated and that a training sequence is available in the receiver for
training the NNM. The state space formulation of an MLPNN
with one hidden layer is given by [27]

(13)

(14)

(15)

(16)

where is the
input vector, which is constituted by samples of the output

channel as defined in (3) and the bias of the MLPNN;
is the neuron output vector in the hidden

layer; is the number of neurons in the hidden layer; is the
NN output; is the matrix of weights between
the input and the hidden layers; and is the
matrix of weights between the hidden and the output layer.

Let be a column vector formed by the columns of the
matrix . Then, the vector containing all weights of
the MLPNN; the error measure ; the total error mea-
sure for a set of training data; and the gradient vector

are given by

(17)

(18)

(19)

(20)

respectively, where is the desired output; is the output
error; and and are the gradients of the error
measure with respect to and , respectively. From the
definition of the error measures in (18) and (19), it can be seen
that the NN tries to make its output as close as possible to the
noise-free channel output in a least-squares sense.

The implementation of the MVSCG optimization method
[26], [27] makes use of the fast exact product of the Hessian
matrix by directional vector as described in [28]. This com-
bination leads to a low computational burden in the training
procedure because the Hessian matrix is not directly evaluated.

The next section shows some simulations results that illus-
trate the feasibility of this technique.

IV. PERFORMANCE ANALYSIS

In this section, we compare the performance of the proposed
M-PLC-DMT with that of a traditional PLC-DMT. As a perfor-
mance measure in the simulations, we use the overall bit-rate
defined by [16]

bit rate (21)

(22)

where denotes the number of bits assigned to the th sub-
channel, is the sample rate, is the number of subchannels,

is the SNR gap, is the noise margin, and is the coding
gain.

We used the following parameters in our simulations: back-
ground noise with a power spectral density (PSD) equal to
dB/Hz; impulse noise with a PSD varying from to
dB/Hz; transmitted OFDM symbols with a PSD equal to
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Fig. 4. PL channel 1: Frequency response.

Fig. 5. PL channel 2: Frequency response.

dB/Hz; length of the OFDM symbol equal to 2048; training
OFDM symbols with flat energy over all subchannels [30]; the
number of OFDM symbols used for the training of the NNM and
the TEQ are equal to 50 and 350, respectively; the sampling fre-
quency of MHz. The used MLPNN has one input, 18
neurons in its hidden layer, and one output, while the PLC-DMT
signal is assumed to occupy the 0.2–5 MHz frequency range.
The frequency responses of the LVDN PL channels are the same
as in [17]. Figs. 4 and 5 depict the impulse responses of the PL
channels used.

Figs. 6 and 7 show the channel output with and without the
impulse noise, as well as the MLPNN output, for both PL chan-
nels. For these cases, the mean-squared errors obtained in the
training are equal to and dB, respectively. In
these plots, all signals have been submitted to a gain to clearly
show the performance of the MLPNN. As can be seen in these
figures, the MLPNN has successfully reduced the impulse noise
at the output of both PL channels. In these specific simulations,
the PSD of the transmitted signal is equal to dB/Hz, the

Fig. 6. (a) The channel output, (b) the channel output plus the additive
non-Gaussian noise, and (c) the output of MLPNN. Refer to the PL channel 1.

Fig. 7. (a) The channel output, (b) the channel output plus the additive
non-Gaussian noise, and (c) the output of the MLPNN. Refer to the PL
channel 2.

PSD of background noise is equal to dB/Hz, and the PSD
of the impulse noise is equal to dB/Hz. For these results, it
was considered that the length of the cyclic prefix and

is equal to 48 and 56 for PL channels 1 and 2, respectively.
As discussed in Section III, the masking of the impulse noise

by the MLPNN results in an increased SNR in each subchannel.
Numerical results verifying this behavior are given in Tables I
and II, which show the SNR in the input of the TEQ block
with (column marked PLC-DMT) and without (column marked
M-PLC-DMT) an MLPNN, with different values for the im-
pulse noise PSD. The SNR values shown in Tables I and II are
given by

SNR (23)

where and denote the desired signal power at the channel
output and the noise power, respectively. As seen in these ta-
bles, the SNR improvement made possible by the MLPNN can
exceed 5.5 dB.
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TABLE I
PL CHANNEL 1: SNR� IMPULSE NOISE PSD

TABLE II
PL CHANNEL 2: SNR� IMPULSE NOISE PSD

TABLE III
PL CHANNEL 1: M-PLC-DMT AND PLC-DMT PERFORMANCE

UNDER DIFFERENT IMPULSE NOISE PSD LEVELS

The drawback of the MVSCG algorithm is the high computa-
tional burden of its training procedure, which can be prohibitive
in real-time applications, despite the low cost achieved by using
methods such as that in [28]. To tackle this impairment, it is
suggested that the MVSCG algorithm be used only at an initial-
ization stage. Thereafter, it is recommended that the low com-
putational cost first-order training procedure suggested in [29]
be used. Computer simulations have revealed that this strategy
is appropriate to overcome the high complexity demanded by
the MVSCG training algorithm at a cost of low-performance
degradation.

To assess the effects of the improved SNR in the system per-
formance, Tables III and IV show the achievable bit rate, in
megabits per second, for both PL channels. These results were
obtained considering dB, to guarantee that

dB, dB; ; and and
for PL channels 1 and 2, respectively. The min-ISI

[24] channel-shortening equalizer was used to obtain these re-
sults. It can be observed in Tables III and IV that in the presence
of high-power impulse noise, significant improvements in the
achievable bit rate are obtained.

Figs. 8 and 9 illustrate the achievable bit rate versus the length
of the shortening equalizer for both PL channels. These figures
show the performance of the proposed M-PLC-DMT against

TABLE IV
PL CHANNEL 2: M-PLC-DMT AND PLC-DMT PERFORMANCE

UNDER DIFFERENT IMPULSE NOISE PSD LEVELS

Fig. 8. M-PLC-DMT and PLC-DMT performances in terms of the length of a
shortening equalizer for PL channel 1 when v = 16.

Fig. 9. M-PLC-DMT and PLC-DMT performances in terms of the length of a
shortening equalizer for PL channel 2 when v = 16.

PLC-DMT when the length of the shortening equalizer varies
from 8 to 128. The following were used to obtain these figures:
the PSD of transmitted signal, impulse noise, and background
noise are equal to dB/Hz, dB/Hz, and dB/Hz,
respectively; dB; dB; dB.
As can be seen in Figs. 8 and 9, the M-PLC-DMT attains a
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Fig. 10. M-PLC-DMT and PLC-DMT performances in terms of v for PL
channel 1 when L = 104.

Fig. 11. M-PLC-DMT and PLC-DMT performances in terms of v for PL
channel 2 when L = 88.

higher bit rate than the PLC-DMT. For these PL channels, the
improvement exceeds 20% for .

Finally, Figs. 10 and 11 display the performance of
PLC-DMT and M-PLC-DMT when is fixed and varies
from 4 to 128. Both figures highlight the fact that M-PLC-DMT
attains a higher data rate than PLC-DMT. To get these results,
the same parameters used for obtaining the results shown in
Figs. 9 and 10 were used.

V. CONCLUDING REMARKS

This contribution has proposed the M-PLC-DMT, a modified
version of the traditional PLC-DMT solution. Basically, the use
of an MLPNN before the TEQ has been included to provide im-
pulse noise reduction and, consequently, enhance the SNR in
each subchannel. The improvements on the achieved bit rates
have been verified under different conditions. The simulation
results reveal that the proposed method has a notable effective-
ness under high-impulse-noise presence.

Although the proposed M-PLC-DMT solution presents re-
markable results under the impulse noise presence in LVDN,
the analysis of other kinds of computational intelligence tech-
niques associated with other optimization methods may show a
better tradeoff between the computational complexity and per-
formance for real-time implementation. The authors are cur-
rently investigating this topic.
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